On the discrete logarithm problem in elliptic curves II

We continue our study on the elliptic curve discrete logarithm problem over finite extension fields. We show, among others, the following results: For sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with ni −→ ∞ and ni log(qi) −→ 0 for i −→ ∞, the discrete logarithm problem in the groups of rational points of elliptic curves over the fields Fqi i can be solved in subexponential expected time (qi i ) . Let a, b > 0 be fixed. Then the problem over fields Fqn , where q is a prime power and n a natural number with a · log(q) ≤ n ≤ b · log(q), can be solved in an expected time of e n)3/4).

[1]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[2]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[3]  T. Willmore Algebraic Geometry , 1973, Nature.

[4]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[5]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[6]  John F. Canny,et al.  Generalized Characteristic Polynomials , 1988, ISSAC.

[7]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[8]  Michael Rosen,et al.  Idempotent relations and factors of Jacobians , 1989 .

[9]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[10]  B. M. Fulk MATH , 1992 .

[11]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[12]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[13]  J. Maurice Rojas,et al.  Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..

[14]  Igor A. Semaev Summation polynomials and the discrete logarithm problem on elliptic curves , 2004, IACR Cryptol. ePrint Arch..

[15]  J. Brasselet Introduction to toric varieties , 2004 .

[16]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[17]  Pierrick Gaudry,et al.  Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem , 2009, J. Symb. Comput..

[18]  C. Diem On the discrete logarithm problem in elliptic curves , 2010, Compositio Mathematica.

[19]  Sam Lichtenstein,et al.  NÉRON MODELS , 2011 .

[20]  Claus Diem On the discrete logarithm problem in class groups of curves , 2011, Math. Comput..