Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment

Molten-salt thermocline tanks are a low-cost energy storage option for concentrating solar power plants. Despite the potential economic advantage, the capacity of thermocline tanks to store sufficient amounts of high-temperature heat is limited by the low energy density of the constituent sensible-heat storage media. A promising design modification replaces conventional rock filler inside the tank with an encapsulated phase-change material (PCM), contributing a latent heat storage mechanism to increase the overall energy density. The current study presents a new finite-volume approach to simulate mass and energy transport inside a latent heat thermocline tank at low computational cost. This storage model is then integrated into a system-level model of a molten-salt power tower plant to inform tank operation with respect to realistic solar collection and power production. With this system model, PCMs with different melting temperatures and heats of fusion are evaluated for their viability in latent heat storage for solar plants.

[1]  D. A. Nissen Thermophysical properties of the equimolar mixture sodium nitrate-potassium nitrate from 300 to 600.degree.C , 1982 .

[2]  J. Konrad,et al.  Thermal conductivity of base-course materials , 2005 .

[3]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[4]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[5]  Gregory J. Kolb,et al.  An evaluation of possible next-generation high temperature molten-salt power towers. , 2011 .

[6]  Suresh V. Garimella,et al.  Thermomechanical Simulation of the Solar One Thermocline Storage Tank , 2012 .

[7]  Min Gao,et al.  Decision framework of solar thermal power plant site selection based on linguistic Choquet operator , 2014 .

[8]  Suresh V. Garimella,et al.  Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants , 2013 .

[9]  S. C. Solanki,et al.  An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation , 2009 .

[10]  K. Nithyanandam,et al.  Analysis of a Latent Thermocline Energy Storage System for Concentrating Solar Power Plants , 2012 .

[11]  S. Garimella,et al.  Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions , 2010 .

[12]  Jon T. Van Lew,et al.  Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material , 2011 .

[13]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[14]  Zhifeng Wang,et al.  Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system , 2012 .

[15]  H. Johnstone,et al.  Heat and mass transfer in packed beds , 1955 .

[16]  Elias K. Stefanakos,et al.  Macroencapsulation of Sodium Nitrate for Thermal Energy Storage in Solar Thermal Power , 2012 .

[17]  Sandia Report,et al.  An Evaluation of Possible Next-Generation High-Temperature Molten-Salt Power Towers , 2011 .

[18]  Suresh V. Garimella,et al.  An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage , 2011 .

[19]  E. Gonzo Estimating correlations for the effective thermal conductivity of granular materials , 2002 .

[20]  Suresh V. Garimella,et al.  System-level simulation of a solar power tower plant with thermocline thermal energy storage , 2014 .

[21]  James E. Pacheco,et al.  Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests , 1995 .

[22]  Gregory J. Kolb Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage Systems for Trough Plants , 2011 .

[23]  Gregory J. Kolb,et al.  Final Test and Evaluation Results from the Solar Two Project , 2002 .

[24]  Suresh V. Garimella,et al.  Second-Law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines , 2012 .

[25]  N. Wakao,et al.  Heat and mass transfer in packed beds. Volume 1 , 1983 .