Globally convergent iterative numerical schemes for nonlinear variational image smoothing and segmentation on a multiprocessor machine

We investigate several iterative numerical schemes for nonlinear variational image smoothing and segmentation implemented in parallel. A general iterative framework subsuming these schemes is suggested for which global convergence irrespective of the starting point can be shown. We characterize various edge-preserving regularization methods from the image processing literature involving auxiliary variables as special cases of this general framework. As a by-product, global convergence can be proven under conditions slightly weaker than these stated in the literature. Efficient Krylov subspace solvers for the linear parts of these schemes have been implemented on a multiprocessor machine. The performance of these parallel implementations has been assessed and empirical results concerning convergence rates and speed-up factors are reported.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[3]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  Claude Pommerell,et al.  Solution of large unsymmetric systems of linear equations , 1992 .

[6]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[7]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[10]  J. Aubin Applied Functional Analysis , 1979 .

[11]  Stan Z. Li,et al.  Convex MRF potential functions , 1995, Proceedings., International Conference on Image Processing.

[12]  Jindřich Nečas,et al.  Kačanov - Galerkin method and its application , 1974 .

[13]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[14]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[15]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[16]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[17]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[19]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  A. Bunse-Gerstner,et al.  Numerische lineare Algebra , 1985 .

[21]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[22]  Edward J. Delp,et al.  Discontinuity preserving regularization of inverse visual problems , 1994, IEEE Trans. Syst. Man Cybern..

[23]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Christoph Schnörr Variational methods for adaptive image smoothing and segmentation , 2000 .

[25]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[26]  William Gropp,et al.  PETSc 2.0 users manual , 2000 .

[27]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[28]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[29]  H. A. V. D. Vorsty,et al.  Krylov Subspace Methods for Large Linear Systems of Equations , 1993 .

[30]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..