Process tomography of ion trap quantum gates.

A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.

[1]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[2]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[3]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[4]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[5]  Andrew M. Childs,et al.  Universal quantum computation with two-level trapped ions , 2000 .

[6]  C. F. Roos,et al.  Speed of ion-trap quantum-information processors , 2000, quant-ph/0003087.

[7]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[8]  H. Häffner,et al.  How to realize a universal quantum gate with trapped ions , 2003, quant-ph/0312162.

[9]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[10]  Christoph Becher,et al.  The coherence of qubits based on single Ca+ions , 2003 .

[11]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[12]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[13]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[14]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[15]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[16]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[17]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[18]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[19]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[20]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[21]  P. C. Haljan,et al.  Entanglement of trapped-ion clock states , 2005 .

[22]  J. P. Home,et al.  Deterministic entanglement and tomography of ion-spin qubits , 2006 .