Modelling of rutting of two flexible pavements with the shakedown theory and the finite element method

Abstract This paper presents a finite element program, for the modelling of rutting of flexible pavements. In its present version, the program incorporates a permanent deformation model for unbound granular materials based on the concept of the shakedown theory developed by Zarka for metallic structures under cyclic loadings and has been used to estimate the permanent deformations of unbound granular materials (UGM) subjected to traffic loading. The calculation is performed in two steps: the first step consists in modelling the resilient behaviour of the pavement in 3D, using non-linear elastic models, to determine the stress field in the pavement. Then stress paths are derived and used to calculate the permanent deformations and the displacements, using a Drucker–Prager yield surface. An application to the prediction of the permanent deformations of experimental pavements with an unbound granular base, tested on the LCPC pavement testing facility is presented.

[1]  P. de Buhan,et al.  A GENERAL METHOD FOR CALCULATING THE TRAFFIC LOAD-INDUCED RESIDUAL SETTLEMENT OF A PLATFORM, BASED ON A STRUCTURAL ANALYSIS APPROACH , 2006 .

[2]  Fredrick Lekarp,et al.  Modelling permanent deformation behaviour of unbound granular materials , 1998 .

[3]  J. Mandel Generalisation de la theorie de plasticite de W. T. Koiter , 1965 .

[4]  Andrei V. Lyamin,et al.  Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact , 2007 .

[5]  Absamad El Abd Développement d'une méthode de prédiction des déformations de surface des chaussées à assises non traitées , 2004 .

[6]  John R. Booker,et al.  SHAKEDOWN OF PAVEMENTS UNDER MOVING SURFACE LOADS , 1984 .

[7]  Pierre Hornych,et al.  A numerical model for flexible pavements rut depth evolution with time , 2007 .

[8]  Alain Denis,et al.  Nouvelle approche pour l'etude des deformations permanentes des graves non traitees a l'appareil triaxial a chargements repetes , 2001 .

[9]  I. F. Collins,et al.  Shakedown in layered pavements under moving surface loads , 1993 .

[10]  Cyrille Chazallon,et al.  An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials , 2005 .

[11]  P. Hornych,et al.  Elastoplastic Model for the Long-Term Behavior Modeling of Unbound Granular Materials in Flexible Pavements , 2006 .

[12]  I. F. Collins,et al.  Shakedown of Unbound Pavements , 2005 .

[13]  Emmanuel Chailleux,et al.  A mathematical-based master-curve construction method applied to complex modulus of bituminous materials , 2006 .

[14]  René de Borst,et al.  A numerical model for the cyclic deterioration of railway tracks , 2003 .

[15]  Christophe Petit,et al.  Modélisation de l'orniérage des chaussées à faible trafic , 2006 .

[16]  Dieter Weichert,et al.  Application of the interior-point method to shakedown analysis of pavements , 2008 .

[17]  M W Witczak,et al.  A COMPREHENSIVE CONSTITUTIVE MODEL FOR GRANULAR MATERIALS IN FLEXIBLE PAVEMENT STRUCTURES , 1997 .