Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures

Poly(ethylene oxide) (PEO) nanofiber mats were produced by electrospinning. Biobased cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) as reinforcement nanofillers were also added to the polymer to produce composite nanofiber mats. The effects of the two cellulose nanofillers on the rheological properties of the PEO solutions and the microstructure, crystallization, and mechanical properties of the mats were systematically compared. The microstructural disparity between the CNCs and CNFs led to significant differences in the solution viscosity, nanofiber morphology and microstructure of the composite nanofiber mats. A unique shish-kebab-like crystalline structure was discovered in both pure and filled PEO nanofibers. Both CNCs and CNFs showed strong reinforcing effects on the nanofiber mats.

[1]  Leonie Moench,et al.  Introduction To Polymers , 2016 .

[2]  F. Ko,et al.  Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals. , 2013, Biomacromolecules.

[3]  B. Hsiao,et al.  Strong Shear Flow-Driven Simultaneous Formation of Classic Shish- Kebab, Hybrid Shish-Kebab, and Transcrystallinity in Poly(lactic acid)/Natural Fiber Biocomposites , 2013 .

[4]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[5]  H. Deng,et al.  Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization , 2012 .

[6]  M. Wolcott,et al.  Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. , 2012, Carbohydrate polymers.

[7]  U. Baxa,et al.  Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC , 2012, Cellulose.

[8]  Xuezhu Xu,et al.  Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. , 2012, ACS applied materials & interfaces.

[9]  U. Baxa,et al.  Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation , 2012, Cellulose.

[10]  G. Fortunato,et al.  Reinforcement of Polymeric Submicrometer‐sized Fibers by Microfibrillated Cellulose , 2012 .

[11]  Qiang Fu,et al.  Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shish-kebab structure , 2012 .

[12]  N. Durán,et al.  Review of cellulose nanocrystals patents: preparation, composites and general applications. , 2012, Recent patents on nanotechnology.

[13]  M. Boyce,et al.  On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes , 2011 .

[14]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[15]  K. Shanmuganathan,et al.  Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers. , 2011, Macromolecular rapid communications.

[16]  Chengjun Zhou,et al.  Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. , 2011, Biomacromolecules.

[17]  Qinglin Wu,et al.  Structure and rheology of nanocrystalline cellulose , 2011 .

[18]  Rucha J. Shah,et al.  Crystalline Block Copolymer Decorated, Hierarchically Ordered Polymer Nanofibers , 2010 .

[19]  R. Dersch,et al.  Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy , 2010 .

[20]  Sergio Torres-Giner,et al.  Extraction of Microfibrils from Bacterial Cellulose Networks for Electrospinning of Anisotropic Biohybrid Fiber Yarns , 2010 .

[21]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[22]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[23]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[24]  Q. Fu,et al.  Direct Formation of Nanohybrid Shish-Kebab in the Injection Molded Bar of Polyethylene/Multiwalled Carbon Nanotubes Composite , 2009 .

[25]  H. Wagner,et al.  Tough nanocomposites: the role of carbon nanotube type. , 2009, Nano letters.

[26]  J. Xiong,et al.  Hierarchically Ordered Polymer Nanofibers via Electrospinning and Controlled Polymer Crystallization , 2008 .

[27]  Q. Zhang,et al.  Shish–kebab of polyolefin by “melt manipulation” strategy in injection-molding: A convenience pathway from fundament to application , 2008 .

[28]  K. Shen,et al.  Crystallization of oriented isotactic polypropylene (iPP) in the presence of in situ poly(ethylene terephthalate) (PET) microfibrils , 2008 .

[29]  L. Mattoso,et al.  Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils , 2008 .

[30]  Alain Dufresne,et al.  Polysaccharide nano crystal reinforced nanocomposites , 2008 .

[31]  N. Ning,et al.  Observation of Shear-Induced Hybrid Shish Kebab in the Injection Molded Bars of Linear Polyethylene Containing Inorganic Whiskers , 2007 .

[32]  Maurizio Prato,et al.  Tensile Mechanics of Electrospun Multiwalled Nanotube/Poly(methyl methacrylate) Nanofibers , 2007 .

[33]  H. Jin,et al.  Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers , 2007 .

[34]  B. Hsiao,et al.  FLOW-INDUCED SHISH KEBAB PRECURSOR STRUCTURES IN ENTANGLED POLYMER MELTS , 2005 .

[35]  Y. Gogotsi,et al.  Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers , 2004 .

[36]  S. Shivkumar,et al.  Nano-sized beads and porous fiber constructs of Poly(ε-caprolactone) produced by electrospinning , 2004 .

[37]  S. Shivkumar,et al.  N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(ε-caprolactone) Nanofibers , 2004 .

[38]  S. S. Kim,et al.  Electrospray characteristics of highly viscous liquids , 2002 .

[39]  I. Šics,et al.  Orientation‐induced crystallization in isotactic polypropylene melt by shear deformation , 2002 .

[40]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[41]  Darrell H. Reneker,et al.  Bending instability in electrospinning of nanofibers , 2001 .

[42]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[43]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[44]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[45]  B. D. Agarwal,et al.  Analysis and Performance of Fiber Composites , 1980 .