Visualizing Network Data

Networks are critical to modern society, and a thorough understanding of how they behave is crucial to their efficient operation. Fortunately, data on networks is plentiful; by visualizing this data, it is possible to greatly improve our understanding. Our focus is on visualizing the data associated with a network and not on simply visualizing the structure of the network itself. We begin with three static network displays; two of these use geographical relationships, while the third is a matrix arrangement that gives equal emphasis to all network links. Static displays can be swamped with large amounts of data; hence we introduce direct manipulation techniques that permit the graphs to continue to reveal relationships in the context of much more data. In effect, the static displays are parameterized so that interesting views may easily be discovered interactively. The software to carry out this network visualization is called SeeNet. >

[1]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[2]  Stephen G. Eick,et al.  Data visualization sliders , 1994, UIST '94.

[3]  Hideki Koike,et al.  The role of another spatial dimension in software visualization , 1993, TOIS.

[4]  Robert McGill,et al.  Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data , 1987 .

[5]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[6]  William W. Gaver Synthesizing auditory icons , 1993, INTERCHI.

[7]  William W. Gaver The SonicFinder: An Interface That Uses Auditory Icons , 1989, Hum. Comput. Interact..

[8]  Frances Paulisch,et al.  The Design of an Extendible Graph Editor , 1993, Lecture Notes in Computer Science.

[9]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[10]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[11]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[12]  Michael F. Schwartz,et al.  Discovering shared interests using graph analysis , 1993, CACM.

[13]  Jeff Beddow,et al.  Shape coding of multidimensional data on a microcomputer display , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[14]  Allan R. Wilks,et al.  Dynamic Graphics for Data Analysis , 1987 .

[15]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[16]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[17]  David W. Scott The New S Language , 1990 .

[18]  John Hershberger,et al.  Color and sound in algorithm animation , 1992, Computer.

[19]  Sara Ann Bly Sound and computer information presentation , 1982 .

[20]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[21]  J. Mezrich,et al.  Dynamic Representation of Multivariate Time Series Data , 1984 .

[22]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[23]  Mariano P. Consens,et al.  Supporting Network Management through Declaratively Specified Data Visualizations , 1993, Integrated Network Management.

[24]  Alberto O. Mendelzon,et al.  Architecture and Applications of the Hy+ Visualization System , 1994, IBM Syst. J..

[25]  Manojit Sarkar,et al.  Graphical fisheye views , 1994, CACM.

[26]  Alberto O. Mendelzon,et al.  Visualizing and querying software structures , 1992, International Conference on Software Engineering.

[27]  Leo Bagrow Sparwenfeld's Map of Siberia , 1947 .

[28]  Graham J. Wills,et al.  Navigating large networks with hierarchies , 1993, Proceedings Visualization '93.

[29]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.