On the asymptotic convergence of B-spline wavelets to Gabor functions

A family of nonorthogonal polynomial spline wavelet transforms is considered. These transforms are fully reversible and can be implemented efficiently. The corresponding wavelet functions have a compact support. It is proven that these B-spline wavelets converge to Gabor functions (modulated Gaussian) pointwise and in all L/sub p/-norms with 1 >

[1]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[2]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[3]  Dennis Gabor,et al.  Theory of communication , 1946 .

[4]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[5]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[6]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[7]  M. Bastiaans,et al.  Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.

[8]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[9]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. Janssen Gabor representation of generalized functions , 1981 .

[11]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[12]  Michael Unser,et al.  Recursive Regularization Filters: Design, Properties, and Applications , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[14]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[16]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[17]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .