Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview.

Photoelectrocatalytic (PEC) technology involved applying an electrical bias to a TiO(2) film electrode, has been widely applied to the degradation of refractory organic pollutants, owing to its high degradation efficiency. This paper reviews recent developments in the PEC degradation of recalcitrant organic contaminants using a TiO(2) film electrode. The preparation and application of various TiO(2) film electrodes have been investigated, as well as the parameters that influence PEC activity such as the crystal structure, the film thickness and substrate material, the applied electrical bias, the solution pH and conductivity. The improvement of PEC activity by doping the TiO(2) film electrode with metal and non-metal ions has been discussed. The mechanism and kinetics for the PEC degradation of organic pollutants have also been highlighted.

[1]  V. Subramanian,et al.  Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. , 2009, Environmental science & technology.

[2]  R. Simão,et al.  Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages , 2007 .

[3]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[4]  Xinyong Li,et al.  Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method , 2009 .

[5]  Chuncheng Chen,et al.  Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. , 2005, The journal of physical chemistry. B.

[6]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[7]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[8]  L Szpyrkowicz,et al.  A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. , 2001, Water research.

[9]  Cheng Sun,et al.  Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO_2/Ti electrode , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[10]  T. Peng,et al.  Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. , 2007, Chemosphere.

[11]  E. Nikolakaki,et al.  Photoelectrocatalytic inactivation of E. coli XL-1 blue colonies in water , 2010 .

[12]  M. Hitchman,et al.  Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol , 2002 .

[13]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[14]  J. Laîné,et al.  Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water , 2000 .

[15]  Jiaguo Yu,et al.  Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders , 2006 .

[16]  M. Sillanpää,et al.  Atomic layer deposited TiO2 films in photodegradation of aqueous salicylic acid , 2009 .

[17]  Huimin Zhao,et al.  Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity , 2008 .

[18]  R. D. Evans,et al.  Deposition of highly hydrogenated carbon films by a modified plasma assisted chemical vapor deposition technique , 2005 .

[19]  N. Yusof,et al.  Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films. , 2007, Journal of hazardous materials.

[20]  W. Chu,et al.  Quantitative prediction of direct and indirect dye ozonation kinetics , 2000 .

[21]  Marc A. Anderson,et al.  The photoelectrocatalytic oxidative treatment of textile wastewater containing disperse dyes , 2009 .

[22]  Guohua Chen,et al.  Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO2/Ti electrode , 2004 .

[23]  A. Khataee,et al.  Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes , 2010 .

[24]  Yu Wang,et al.  Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application , 2006 .

[25]  C. Martínez-Huitle,et al.  Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review , 2009 .

[26]  A. Mills,et al.  Novel low-temperature photocatalytic titania films produced by plasma-assisted reactive dc magnetron sputtering , 2007 .

[27]  Jun Ma,et al.  Preparation and characterization of sulfur-doped TiO(2)/Ti photoelectrodes and their photoelectrocatalytic performance. , 2008, Journal of hazardous materials.

[28]  Joseph G. Shapter,et al.  The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes , 2007 .

[29]  H. Selcuk Disinfection and formation of disinfection by-products in a photoelectrocatalytic system. , 2010, Water research.

[30]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[31]  S. Hotchandani,et al.  Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol , 1993 .

[32]  Shuo Chen,et al.  Electrochemically assisted photocatalytic degradation of phenol using silicon-doped TiO2 nanofilm electrode. , 2010 .

[33]  Y. Xian,et al.  Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method , 2006 .

[34]  Shengyou Huang,et al.  Preparation of Fe-doped TiO{sub 2} nanotube arrays and their photocatalytic activities under visible light , 2010 .

[35]  A. Nejmeddine,et al.  Electro-coagulation of reactive textile dyes and textile wastewater , 2005 .

[36]  M. L. Curri,et al.  Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. , 2007, Journal of hazardous materials.

[37]  Huijun Zhao,et al.  Photoelectrochemical manifestation of photoelectron transport properties of vertically aligned nanotubular TiO2 photoanodes. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  P. Kamat,et al.  Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method. , 2006, The journal of physical chemistry. B.

[39]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[40]  Shengyou Huang,et al.  Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays , 2009 .

[41]  Xinyong Li,et al.  Fabrication of Photoelectrode Materials , 2010 .

[42]  Y. Xian,et al.  Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. , 2007, Journal of hazardous materials.

[43]  A. Morawski,et al.  New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate. , 2006, Chemosphere.

[44]  M. Xing,et al.  New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light , 2009 .

[45]  Yanbiao Liu,et al.  Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte , 2009 .

[46]  Huijun Zhao,et al.  Photoelectrochemical behaviour of methanol oxidation at nanoporous TiO2 film electrodes , 2001 .

[47]  Jin-Ming Wu,et al.  Photocatalytic and photoelectrocatalytic degradation of aqueous Rhodamine B by low-temperature deposited anatase thin films , 2008 .

[48]  Xianfeng Li,et al.  A new coral structure TiO2/Ti film electrode applied to photoelectrocatalytic degradation of Reactive Brilliant Red. , 2009, Journal of hazardous materials.

[49]  Qixing Zhou,et al.  Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study , 2010 .

[50]  Jiamo Fu,et al.  Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films , 2009 .

[51]  Song Han,et al.  Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes , 2008 .

[52]  Porun Liu,et al.  Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[53]  J. Zou,et al.  Anatase TiO₂ crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. , 2011, ACS applied materials & interfaces.

[54]  Haroldo G. Oliveira,et al.  Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes , 2010 .

[55]  Huijun Zhao,et al.  Comparison of photocatalytic degradation kinetic characteristics of different organic compounds at anatase TiO2 nanoporous film electrodes , 2006 .

[56]  H. Selcuk,et al.  Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO(2) coated photoanode. , 2008, Chemosphere.

[57]  Hajime Haneda,et al.  Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations , 2005 .

[58]  A. M. Efstathiou,et al.  Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes , 2009 .

[59]  Ming-hua Zhou,et al.  Efficient photoelectrocatalytic activity of TiO2/Ti anode fabricated by metalorganic chemical vapor deposition (MOCVD) , 2009 .

[60]  M. Neumann-Spallart,et al.  Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. , 2003, Chemosphere.

[61]  S. Anandan,et al.  An Overview of Semi-Conductor Photocatalysis: Modification of TiO2 Nanomaterials , 2010 .

[62]  Cheng Sun,et al.  Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution , 2006 .

[63]  C. Fan,et al.  Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. , 2002, Water research.

[64]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[65]  Yang Xiaoli,et al.  Photoelectrocatalytic degradation of phenol using a TiO2/Ni thin-film electrode , 2003 .

[66]  Ekoko Bakambo Gracien,et al.  Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method , 2007 .

[67]  Li Yang,et al.  A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia coli. , 2010, Biomaterials.

[68]  Xiang-zhong Li,et al.  Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes , 2006 .

[69]  Moucheng Li,et al.  Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes , 2006 .

[70]  Yanbiao Liu,et al.  Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. , 2009, Journal of hazardous materials.

[71]  M. Anderson,et al.  Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes , 2004 .

[72]  Xian-liang Song,et al.  Enhanced photocatalytic disinfection of P. expansum in cold storage using a TiO2/ACF film. , 2010, International journal of food microbiology.

[73]  Richard J. Brown,et al.  Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review , 2011 .

[74]  Yanjun Xin,et al.  Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. , 2011, Journal of hazardous materials.

[75]  C. Pan,et al.  Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light , 2010 .

[76]  K. Rajeshwar,et al.  Bisphenol A removal from wastewater using self-organized TIO(2) nanotubular array electrodes. , 2010, Chemosphere.

[77]  Haitao Hu,et al.  Preparations of TiO2 film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde. , 2007, Journal of environmental sciences.

[78]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[79]  Guohua Chen,et al.  Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability , 2007 .

[80]  Sean C. Smith,et al.  Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets. , 2010, Journal of colloid and interface science.

[81]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .

[82]  Xinyong Li,et al.  Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with {101} crystal face , 2009 .

[83]  A. Ellis,et al.  Electrocatalytic characterization and dye degradation of nano-TiO2 electrode films fabricated by CVD. , 2009, The Science of the total environment.

[84]  Yanjuan Sun,et al.  Photoelectrocatalytic Oxidation of Rose Bengal in Aqueous Solution Using a Ti/TiO2 Mesh Electrode , 2000 .

[85]  Q. Xie,et al.  Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation , 2007 .

[86]  G. Shi,et al.  Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. , 2007, Environmental science & technology.

[87]  Yibing Xie Photoelectrochemical application of nanotubular titania photoanode , 2006 .

[88]  J. Schoonman,et al.  The Photoresponse of Iron- and Carbon-Doped TiO2 (Anatase) Photoelectrodes , 2004 .

[89]  Zhuyi Wang,et al.  Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. , 2009, Journal of hazardous materials.

[90]  Mikko Heikkilä,et al.  Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis , 2009 .

[91]  Hyungjun Kim,et al.  Photocatalytic effect of thermal atomic layer deposition of TiO2 on stainless steel , 2011 .

[92]  Y. Xie,et al.  Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application , 2006 .

[93]  Shifu Chen,et al.  Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst. , 2007, Chemosphere.

[94]  Song Han,et al.  Preparation of high efficient photoelectrode of N–F-codoped TiO2 nanotubes , 2008 .

[95]  A. Durán,et al.  Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel , 2009 .

[96]  Jiamo Fu,et al.  Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor , 2005 .

[97]  Hsyi-En Cheng,et al.  Effect of nitrogen doping concentration on the properties of TiO2 films grown by atomic layer deposition , 2011 .

[98]  Yanbiao Liu,et al.  Preparation of short, robust and highly ordered TiO2 nanotube arrays and their applications as electrode , 2009 .

[99]  Nor Azah Yusof,et al.  Electrochemical-assisted photodegradation of dye on TiO2 thin films: investigation on the effect of operational parameters. , 2005, Journal of hazardous materials.

[100]  W. Leng,et al.  Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600 °C , 2003 .

[101]  J. Shapter,et al.  Electrochemical characterisation of patterned carbon nanotube electrodes on silane modified silicon , 2008 .

[102]  C. Grimes,et al.  Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes , 2007 .

[103]  M. Anderson,et al.  Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganic ions , 2003 .

[104]  G. Lu,et al.  Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes. , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[105]  S. Pulcinelli,et al.  Influence of particle size on the photoactivity of Ti/TiO2 thin film electrodes, and enhanced photoelectrocatalytic degradation of indigo carmine dye , 2011 .

[106]  Huijun Zhao,et al.  Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. , 2007, Environmental science & technology.

[107]  Jin-Ming Wu,et al.  Hydrothermal growth of nanometer- to micrometer-size anatase single crystals with exposed (001) facets and their ability to assist photodegradation of rhodamine B in water. , 2011, Journal of hazardous materials.

[108]  J. Son,et al.  Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition , 2009 .

[109]  R. Palombari,et al.  Oxidative photoelectrochemical technology with Ti/TiO2 anodes , 2002 .

[110]  Marc A. Anderson,et al.  Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes , 2003 .

[111]  L. Arriaga,et al.  Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. , 2009, Water research.

[112]  Huijun Zhao,et al.  In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria , 2011 .

[113]  M. Misra,et al.  Double-wall anodic titania nanotube arrays for water photooxidation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[114]  Xu Zhao,et al.  Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode. , 2009, The Science of the total environment.

[115]  Huimin Zhao,et al.  Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. , 2007, Environmental pollution.

[116]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[117]  K. Lee,et al.  Adsorption and photocatalytic degradation of methylene blue over TiO2 films on carbon fiber prepared by atomic layer deposition , 2011 .

[118]  G. Tang,et al.  Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light. , 2010, Journal of hazardous materials.

[119]  Huijun Zhao,et al.  Kinetic study of photocatalytic oxidation of adsorbed carboxylic acids at TiO2 porous films by photoelectrolysis , 2004 .

[120]  M. L. Curri,et al.  Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates , 2005 .

[121]  Jincai Zhao,et al.  Mechanism of photocatalytic degradation of dye MG by TiO2-film electrode with cathodic bias potential , 2010 .

[122]  M. Toparli,et al.  Preparation and characterization of Fe2O3–TiO2 thin films on glass substrate for photocatalytic applications , 2006 .

[123]  M. Zanoni,et al.  Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine , 2010 .

[124]  Huimin Zhao,et al.  A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity , 2008 .

[125]  Yanbiao Liu,et al.  Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays , 2009 .

[126]  J. Ni,et al.  Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode , 2006 .