CAMRAD - A COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS
暂无分享,去创建一个
The Comprehensive Analytical Model of Rotorcraft Aerodynamics, CAMRAD, program is designed to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is a consistent combination of structural, inertial, and aerodynamic models applicable to a wide range of problems and a wide class of vehicles. The CAMRAD analysis can be applied to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The rotor degrees of freedom included are blade/flap bending, rigid pitch and elastic torsion, and optionally gimbal or teeter motion. General two-rotor aircrafts can be modeled. Single main-rotor and tandem helicopter and sideby-side tilting proprotor aircraft configurations can be considered. The case of a rotor or helicopter in a wind tunnel can also be modeled. The aircraft degrees of freedom included are the six rigid body motion, elastic airframe motions, and the rotor/engine speed perturbations. CAMRAD calculates the load and motion of helicopters and airframes in two stages. First the trim solution is obtained; then the flutter, flight dynamics, and/or transient behavior can be calculated. The trim operating conditions considered include level flight, steady climb or descent, and steady turns. The analysis of the rotor includes nonlinear inertial and aerodynamic models, applicable to large blade angles and a high inflow ratio, The rotor aerodynamic model is based on two-dimensional steady airfoil characteristics with corrections for three-dimensional and unsteady flow effects, including a dynamic stall model. In the flutter analysis, the matrices are constructed that describe the linear differential equations of motion, and the equations are analyzed. In the flight dynamics analysis, the stability derivatives are calculated and the matrices are constructed that describe the linear differential equations of motion. These equations are analyzed. In the transient analysis, the rigid body equations of motion are numerically integrated, for a prescribed transient gust or control input. The CAMRAD program product is available by license for a period of ten years to domestic U.S. licensees. The licensed program product includes the CAMRAD source code, command procedures, sample applications, and one set of supporting documentation. Copies of the documentation may be purchased separately at the price indicated below. CAMRAD is written in FORTRAN 77 for the DEC VAX under VMS 4.6 with a recommended core memory of 4.04 megabytes. The DISSPLA package is necessary for graphical output. CAMRAD was developed in 1980.