Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys

[1]  Marcelo de Aquino Martorano,et al.  A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification , 2003 .

[2]  Peter D. Lee,et al.  A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection , 2003 .

[3]  J. Hunt,et al.  A study of microsegregation in Al-Cu using a novel single-pan scanning calorimeter , 2003 .

[4]  A. Kermanpur,et al.  A microstructural model of competitive growth in nickel based superalloys , 2003 .

[5]  N. Cheung,et al.  Solidification thermal parameters affecting the columnar-to-equiaxed transition , 2002 .

[6]  W. Zhang,et al.  Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling , 2002 .

[7]  R. Atwood,et al.  Modeling of porosity formation in direct chill cast aluminum-magnesium alloys , 2002 .

[8]  A. L. Greer,et al.  Application of cellular automaton–finite element model to the grain refinement of directionally solidified Al–4.15 wt% Mg alloys , 2002 .

[9]  R. Atwood,et al.  A three-phase model of hydrogen pore formation during the equiaxed dendritic solidification of aluminum-silicon alloys , 2002 .

[10]  Peter D. Lee,et al.  A comparison of three modeling approaches for the prediction of microporosity in aluminum-silicon alloys , 2001 .

[11]  J. Hunt,et al.  Hydrogen porosity in directionally solidified aluminium–copper alloys: a mathematical model , 2001 .

[12]  Xinyan Yan,et al.  Microsegregation in Al–4.5Cu wt.% alloy: experimental investigation and numerical modeling , 2001 .

[13]  C. Gandin,et al.  Experimental Study of the Transition from Constrained to Unconstrained Growth during Directional Solidification , 2000 .

[14]  A. L. Greer,et al.  Modelling of inoculation of metallic melts : Application to grain refinement of aluminium by Al-Ti-B , 2000 .

[15]  A. Ares,et al.  Solidification parameters during the columnar-to-equiaxed transition in lead-tin alloys , 2000 .

[16]  L. Nastac Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys , 1999 .

[17]  Q. Han,et al.  Different growth regimes during directional dendritic growth , 1997 .

[18]  R. Trivedi,et al.  Nucleation ahead of the advancing interface in directional solidification , 1997 .

[19]  C. Gandin,et al.  A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth , 1997 .

[20]  J. Hunt,et al.  Numerical modeling of cellular/dendritic array growth: spacing and structure predictions , 1996 .

[21]  C. Gandin,et al.  Stochastic Modelling of Solidification Grain Structures , 1995 .

[22]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[23]  M. Rappaz,et al.  3-Dimensional simulation of the grain formation in investment castings , 1994 .

[24]  G. B. Stringfellow,et al.  InAsBi alloys grown by organometallic vapor phase epitaxy , 1993 .

[25]  H. Weidong,et al.  Primary spacing selection of constrained dendritic growth , 1993 .

[26]  David R Poirier,et al.  Surface tension of aluminumrich Al-Cu liquid alloys , 1987 .

[27]  J. Hunt,et al.  Columnar and equiaxed growth: I. A model of a columnar front with a temperature dependent velocity , 1987 .

[28]  S. C. Flood,et al.  Columnar and equiaxed growth: II. Equiaxed growth ahead of a columnar front , 1987 .

[29]  J. Hunt,et al.  Steady state columnar and equiaxed growth of dendrites and eutectic , 1984 .

[30]  B. Shollock,et al.  Seeding of single crystal superalloys: role of seed melt-back on casting defects , 2004 .

[31]  D. Camel,et al.  COLUMNAR TO EQUIAXED TRANSITION OF REFINED AL-4WT.%CU ALLOYS UNDER DIFFUSIVE AND CONVECTIVE TRANSPORT CONDITIONS , 1998 .

[32]  Steve Brown,et al.  A cellular automaton model of steady-state columnar-dendritic growth in binary alloys , 1995, Journal of Materials Science.