Modélisation stochastique de processus pharmaco-cinétiques, application à la reconstruction tomographique par émission de positrons (TEP) spatio-temporelle. (Stochastic modeling of pharmaco-kinetic processes, applied to PET space-time reconstruction)

L'objectif de ce travail est de developper de nouvelles methodes statistiques de reconstruction d'image spatiale (3D) et spatio-temporelle (3D+t) en Tomographie par Emission de Positons (TEP). Le but est de proposer des methodes efficaces, capables de reconstruire des images dans un contexte de faibles doses injectees tout en preservant la qualite de l'interpretation. Ainsi, nous avons aborde la reconstruction sous la forme d'un probleme inverse spatial et spatio-temporel (a observations ponctuelles) dans un cadre bayesien non parametrique. La modelisation bayesienne fournit un cadre pour la regularisation du probleme inverse mal pose au travers de l'introduction d'une information dite a priori. De plus, elle caracterise les grandeurs a estimer par leur distribution a posteriori, ce qui rend accessible la distribution de l'incertitude associee a la reconstruction. L'approche non parametrique quant a elle pourvoit la modelisation d'une grande robustesse et d'une grande flexibilite. Notre methodologie consiste a considerer l'image comme une densite de probabilite dans (pour une reconstruction en k dimensions) et a chercher la solution parmi l'ensemble des densites de probabilite de . La grande dimensionalite des donnees a manipuler conduit a des estimateurs n'ayant pas de forme explicite. Cela implique l'utilisation de techniques d'approximation pour l'inference. La plupart de ces techniques sont basees sur les methodes de Monte-Carlo par chaines de Markov (MCMC). Dans l'approche bayesienne non parametrique, nous sommes confrontes a la difficulte majeure de generer aleatoirement des objets de dimension infinie sur un calculateur. Nous avons donc developpe une nouvelle methode d'echantillonnage qui allie a la fois bonnes capacites de melange et possibilite d'etre parallelise afin de traiter de gros volumes de donnees. L'approche adoptee nous a permis d'obtenir des reconstructions spatiales 3D sans necessiter de voxellisation de l'espace, et des reconstructions spatio-temporelles 4D sans discretisation en amont ni dans l'espace ni dans le temps. De plus, on peut quantifier l'erreur associee a l'estimation statistique au travers des intervalles de credibilite.

[1]  Alan E. Gelfand,et al.  SPATIAL NONPARAMETRIC BAYESIAN MODELS , 2001 .

[2]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[3]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[4]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[5]  J. McCloskey,et al.  A model for the distribution of individuals by species in an environment , 1965 .

[6]  D. Bailey,et al.  The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. , 1997 .

[7]  Lancelot F. James,et al.  Generalized weighted Chinese restaurant processes for species sampling mixture models , 2003 .

[8]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[9]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[10]  L. Tardella,et al.  Approximating distributions of random functionals of Ferguson‐Dirichlet priors , 1998 .

[11]  T. Ferguson Some Developments of the Blackwell-MacQueen Urn Scheme , 2005 .

[12]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[13]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[14]  Radford M. Neal Bayesian Mixture Modeling , 1992 .

[15]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[16]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[17]  Arkadiusz Sitek,et al.  Reconstruction of Emission Tomography Data Using Origin Ensembles , 2011, IEEE Transactions on Medical Imaging.

[18]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[19]  J. Sethuraman,et al.  Convergence of Dirichlet Measures and the Interpretation of Their Parameter. , 1981 .

[20]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[21]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[22]  Paul Damien,et al.  Sampling Methods For Bayesian Nonparametric Inference Involving Stochastic Processes , 1998 .

[23]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[24]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[25]  W. Sudderth,et al.  Polya Trees and Random Distributions , 1992 .

[26]  James A. Scott,et al.  Positron Emission Tomography: Basic Science and Clinical Practice , 2004 .

[27]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[28]  D. Townsend,et al.  The Theory and Practice of 3D PET , 1998, Developments in Nuclear Medicine.

[29]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[30]  P. Müller,et al.  Defining Predictive Probability Functions for Species Sampling Models. , 2013, Statistical science : a review journal of the Institute of Mathematical Statistics.

[31]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[32]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[33]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[34]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[35]  S. MacEachern Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .

[36]  M. West,et al.  Hyperparameter estimation in Dirichlet process mixture models , 1992 .

[37]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[38]  T. Hanson Inference for Mixtures of Finite Polya Tree Models , 2006 .

[39]  P B Hoffer,et al.  Computerized three-dimensional segmented human anatomy. , 1994, Medical physics.

[40]  Jim Pitman,et al.  The two-parameter generalization of Ewens' random partition structure , 2003 .

[41]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[42]  Paul Kinahan,et al.  Analytic 3D image reconstruction using all detected events , 1989 .

[43]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[44]  J. Pitman Poisson-Kingman partitions , 2002, math/0210396.

[45]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[46]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[47]  Ken D. Sauer,et al.  Direct reconstruction of kinetic parameter images from dynamic PET data , 2005, IEEE Transactions on Medical Imaging.

[48]  Richard M. Leahy,et al.  Statistical approaches in quantitative positron emission tomography , 2000, Stat. Comput..

[49]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[50]  Richard M. Leahy,et al.  Spatiotemporal reconstruction of list-mode PET data , 2002, IEEE Transactions on Medical Imaging.

[51]  Bernard W. Silverman,et al.  Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .

[52]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[53]  J. Kingman Random Discrete Distributions , 1975 .

[54]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[55]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[56]  F. Quintana A predictive view of Bayesian clustering , 2006 .

[57]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[58]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[59]  Michael A. West,et al.  Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .

[60]  Max Welling,et al.  Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation , 2006, UAI.

[61]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[62]  R. Leahy,et al.  High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. , 1998, Physics in medicine and biology.

[63]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[64]  J. Pitman Random discrete distributions invariant under size-biased permutation , 1996, Advances in Applied Probability.

[65]  Bani K. Mallick,et al.  Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing , 1997 .

[66]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[67]  J. Pitman,et al.  Prediction rules for exchangeable sequences related to species sampling ( , 2000 .

[68]  L. Shepp,et al.  A Statistical Model for Positron Emission Tomography , 1985 .

[69]  Irène Buvat,et al.  Joint estimation of dynamic PET images and temporal basis functions using fully 4D ML-EM , 2006, Physics in medicine and biology.

[70]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.