N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems

Abstract Recently a great deal of attention has been given to numerical algorithms for subspace state space system identification (N4SID). In this paper, we derive two new N4SID algorithms to identify mixed deterministic-stochastic systems. Both algorithms determine state sequences through the projection of input and output data. These state sequences are shown to be outputs of non-steady state Kalman filter banks. From these it is easy to determine the state space system matrices. The N4SID algorithms are always convergent (non-iterative) and numerically stable since they only make use of QR and Singular Value Decompositions. Both N4SID algorithms are similar, but the second one trades off accuracy for simplicity. These new algorithms are compared with existing subspace algorithms in theory and in practice.

[1]  M. Moonen,et al.  A subspace algorithm for balanced state space system identification , 1993, IEEE Trans. Autom. Control..

[2]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[3]  P. Faurre Stochastic Realization Algorithms , 1976 .

[4]  Johan A. K. Suykens,et al.  Subspace algorithms for system identification and stochastic realization , 1991 .

[5]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[6]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  K. Arun,et al.  Balanced approximation of stochastic systems , 1990 .

[8]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[9]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[10]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[11]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  P. Van Overschee,et al.  Two subspace algorithms for the identification of combined deterministic-stochastic systems , 1992 .

[13]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[14]  B. Anderson,et al.  Model reduction for control system design , 1984 .

[15]  Acpm Ton Backx,et al.  Identification of an industrial process : a Markov parameter approach , 1987 .

[16]  J. K. Baksalary,et al.  Two relations between oblique and Λ-orthogonal projectors , 1979 .

[17]  Michel Verhaegen,et al.  A Novel Non-Iterative Mimo State Space Model Identification Technique , 1991 .

[18]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .