Peroxisome Proliferator-Activated Receptor-- Null Mice Have Increased White Adipose Tissue Glucose Utilization , GLUT 4 , and Fat Mass : Role in Liver and Brain

Unité Mixté de Recherche 5018 (C.K., P.D.C., E.M., M.B., A.W., R.B.), Centre National de la Recherche Scientifique, University Paul Sabatier, 31403 Toulouse, France; Institut de Biologie Animale (J.R., S.K., B.D., S.G., W.W.), Université de Lausanne, CH-1015 Lausanne, Switzerland; Département de Physiologie (J.S.), Faculté de Médecine, Université de Genève, CH-1211 Genève, Switzerland; Institut de Pharmacologie et de Toxicologie (M.F., M.U., M.H., B.T.), Université de Lausanne, CH-1005 Lausanne, Switzerland; and Unit of Pharmacokinetics, Metabolism, Nutrition, and Toxicology (P.D.C., N.M.D.), Université Catholique de Louvain, B-1348 Brussels, Belgium

[1]  A. Cimini,et al.  PPARγ‐dependent effects of conjugated linoleic acid on the human glioblastoma cell line (ADF) , 2005, International journal of cancer.

[2]  P. Scarpace,et al.  Hypothalamic pro-opiomelanocortin gene delivery ameliorates obesity and glucose intolerance in aged rats , 2005, Diabetologia.

[3]  M. Racke,et al.  Agonists for the peroxisome proliferator‐activated receptor‐α and the retinoid X receptor inhibit inflammatory responses of microglia , 2005, Journal of neuroscience research.

[4]  E. Joe,et al.  PPAR-alpha activators suppress STAT1 inflammatory signaling in lipopolysaccharide-activated rat glia , 2005, Neuroreport.

[5]  J. Leza,et al.  Peroxisome proliferator-activated receptor gamma activation decreases neuroinflammation in brain after stress in rats , 2005, Biological Psychiatry.

[6]  C. Knauf,et al.  Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, controls muscle glycogen synthesis. , 2004, Endocrinology.

[7]  D. Bastelica,et al.  PPARα deficiency does not modify age dependency but prevents high fat diet increase in plasma PAI-1 as well as insulin resistance , 2004, Thrombosis and Haemostasis.

[8]  O. Gavrilova,et al.  Peroxisome proliferator-activated receptor-alpha deficiency does not alter insulin sensitivity in mice maintained on regular or high-fat diet: hyperinsulinemic-euglycemic clamp studies. , 2004, Endocrinology.

[9]  M. Foretz,et al.  Impaired Glucose Homeostasis in Mice Lacking the α1b-Adrenergic Receptor Subtype* , 2004, Journal of Biological Chemistry.

[10]  L. Rossetti,et al.  Minireview: nutrient sensing and the regulation of insulin action and energy balance. , 2003, Endocrinology.

[11]  J. Gustafsson,et al.  Expression of the Insulin-responsive Glucose Transporter GLUT4 in Adipocytes Is Dependent on Liver X Receptor α* , 2003, Journal of Biological Chemistry.

[12]  Roberto Conti,et al.  Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production , 2003, Nature Medicine.

[13]  P. J. Larsen,et al.  PPARα/γ ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly , 2003 .

[14]  M. Saad,et al.  Peroxisome Proliferator-activated Receptor α (PPARα) Influences Substrate Utilization for Hepatic Glucose Production* , 2002, The Journal of Biological Chemistry.

[15]  M. Reitman,et al.  WY14,643, a Peroxisome Proliferator-activated Receptor α (PPARα) Agonist, Improves Hepatic and Muscle Steatosis and Reverses Insulin Resistance in Lipoatrophic A-ZIP/F-1 Mice* , 2002, The Journal of Biological Chemistry.

[16]  G. Shulman,et al.  Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β‐cell dysfunction , 2002, European journal of clinical investigation.

[17]  S. Melmed,et al.  Minireview: Neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. , 2002, Endocrinology.

[18]  Bernard Thorens,et al.  Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. , 2002, American journal of physiology. Endocrinology and metabolism.

[19]  B. Thorens,et al.  Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. , 2002, American journal of physiology. Endocrinology and metabolism.

[20]  Hitoshi Sato,et al.  The peroxisome proliferator-activated receptor α-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain , 2002, Neuropharmacology.

[21]  Monica V. Kumar,et al.  Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Reach,et al.  PPAR-α–Null Mice Are Protected From High-Fat Diet–Induced Insulin Resistance , 2001 .

[23]  B. Staels,et al.  PPARS, metabolic disease and atherosclerosis. , 2001, Pharmacological research.

[24]  L. Rossetti,et al.  Central melanocortin receptors regulate insulin action. , 2001, The Journal of clinical investigation.

[25]  G. Gibbons,et al.  Disturbances in the normal regulation of SREBP-sensitive genes in PPARα-deficient mice , 2001 .

[26]  A. Minnich,et al.  A potent PPARα agonist stimulates mitochondrial fatty acid β-oxidation in liver and skeletal muscle , 2001 .

[27]  G. Cooney,et al.  Peroxisome Proliferator—Activated Receptor (PPAR)-α Activation Lowers Muscle Lipids and Improves Insulin Sensitivity in High Fat—Fed Rats Comparison With PPAR-γ Activation , 2001 .

[28]  R. Burcelin,et al.  Portal glucose infusion in the mouse induces hypoglycemia: evidence that the hepatoportal glucose sensor stimulates glucose utilization. , 2000, Diabetes.

[29]  T Hashimoto,et al.  Defect in Peroxisome Proliferator-activated Receptor α-inducible Fatty Acid Oxidation Determines the Severity of Hepatic Steatosis in Response to Fasting* , 2000, The Journal of Biological Chemistry.

[30]  Sander Kersten,et al.  Roles of PPARs in health and disease , 2000, Nature.

[31]  W. Wahli,et al.  Peroxisome proliferator-activated receptors: insight into multiple cellular functions. , 2000, Mutation research.

[32]  B. Spiegelman,et al.  PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro , 1999 .

[33]  J. Auwerx PPARγ, the ultimate thrifty gene , 1999, Diabetologia.

[34]  W. Wahli,et al.  Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting , 1999 .

[35]  B. Spiegelman,et al.  ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose , 1999, Molecular and Cellular Biology.

[36]  N. Barzilai,et al.  Intracerebroventricular Leptin Regulates Hepatic but Not Peripheral Glucose Fluxes* , 1998, The Journal of Biological Chemistry.

[37]  R. Burcelin,et al.  Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Peters,et al.  Altered Constitutive Expression of Fatty Acid-metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-activated Receptor α (PPARα)* , 1998, The Journal of Biological Chemistry.

[39]  B. Kahn,et al.  Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. , 1997, Endocrinology.

[40]  J Auwerx,et al.  Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. , 1996, Journal of lipid research.

[41]  A. Sainsbury,et al.  Intracerebroventricular administration of neuropeptide Y to normal rats increases obese gene expression in white adipose tissue , 1996, Diabetologia.

[42]  B. Kahn,et al.  Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: Implications for nutrient partitioning , 1996, Proceedings of the Nutrition Society.

[43]  J. Gustafsson,et al.  Localization of the peroxisome proliferator-activated receptor in the brain. , 1994, Neuroreport.

[44]  K. Umesono,et al.  Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  L. Rossetti,et al.  Mechanisms of fatty acid-induced inhibition of glucose uptake. , 1994, The Journal of clinical investigation.

[46]  R. Printz,et al.  The Effects of Hyperinsulinemia and Hyperglycemia on GLUT4 and Hexokinase II mRNA and Protein in Rat Skeletal Muscle and Adipose Tissue , 1993, Diabetes.

[47]  R. Burcelin,et al.  Changes in uncoupling protein and GLUT4 glucose transporter expressions in interscapular brown adipose tissue of diabetic rats: relative roles of hyperglycaemia and hypoinsulinaemia. , 1993, The Biochemical journal.

[48]  I. Issemann,et al.  Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators , 1990, Nature.

[49]  Michael Somogyi,et al.  Determination of blood sugar. , 1945 .

[50]  W. Wahli,et al.  Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. , 2005, Endocrinology.

[51]  J. Doležel,et al.  Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors. , 2005, Neoplasma (Bratislava).

[52]  W. Wahli,et al.  Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. , 1996, Endocrinology.