Mechanisms of Activation

It is well known1–5 that molecules in gaseous media become activated in a direct collision between the translators. When a reference molecule undergoes collision with another molecule, the total kinetic energy of the two molecules is redistributed between them. The possibility exists for transfer between the translational kinetic energy of the colliding molecules and the energy stored in the vibrational, rotational, or electronic modes of the molecules.

[1]  R. Armstrong,et al.  The kinetics of the Cu/Cu+ electrode in solid electrolyte systems , 1974 .

[2]  R. Marcus,et al.  Semiclassical theory of molecular spectral line shapes in gases , 1973 .

[3]  W. Lester,et al.  Rotational transitions in H2 by Li+ collisions at Ec.m. = 0.6 eV; Comparison with experiment , 1974 .

[4]  D. Secrest,et al.  Exact Quantum‐Mechanical Calculation of a Collinear Collision of a Particle with a Harmonic Oscillator , 1966 .

[5]  E. Merzbacher Quantum mechanics , 1961 .

[6]  M. Wolfsberg,et al.  Comparison of Approximate Translational—Vibrational Energy‐Transfer Formulas with Exact Classical Calculations , 1965 .

[7]  M. Wolfsberg,et al.  Simple Expression for “Steric Factor” in Translational–Vibrational Energy Transfer , 1969 .

[8]  H. Shin Excitation of Molecular Vibration on Collision. I. Preferential Orientations for Vibrational Transitions , 1968 .

[9]  C. Zener Interchange of Translational, Rotational and Vibrational Energy in Molecular Collisions , 1931 .

[10]  E. Anderson,et al.  Modern Physics and Quantum Mechanics , 1971 .

[11]  J. Bass Translation to vibration energy transfer in O + NH3 and O + CO2 collisions , 1974 .

[12]  C. Hansen,et al.  Three-dimensional model of collision-induced vibrational transitions in homonuclear diatomic molecules , 1970 .

[13]  S. Chu,et al.  Approximations for the rotational excitation of molecules by atoms , 1975 .

[14]  H. Shin Excitation of molecular vibration on collision. Simultaneous vibrational and rotational transitions in hydrogen + argon at high collision velocities , 1972 .

[15]  H. Eyring,et al.  Application of Significant Structure Theory to Water1 , 1964 .

[16]  Jeong‐long Lin,et al.  DW‐variational study of collinear atom‐diatom collisions , 1973 .

[17]  D. Stevenson On the Monomer Concentration in Liquid Water , 1965 .

[18]  R. Mckenzie Vibration–translation energy transfer in anharmonic diatomic molecules. I. A comparative evaluation of the semiclassical approximation , 1975 .

[19]  Keith J. Laidler,et al.  Theories Of Chemical Reaction Rates , 1969 .

[20]  Samuel Glasstone,et al.  The Theory Of Rate Processes , 1941 .

[21]  J. Frankel Kinetic theory of liquids , 1946 .

[22]  R. Amme,et al.  Three‐Dimensional Morse‐Potential Calculation of Vibrational Energy Transfer: Application to Diatomic Molecules , 1966 .

[23]  S. Green Rotational excitation in H2-H2 collisions - Close-coupling calculations , 1975 .

[24]  R. J. Cross,et al.  Semiclassical Theory of Vibrationally Inelastic Scattering in Three Dimensions , 1971 .

[25]  D. Secrest,et al.  Effects of an Attractive Well Potential on the Atom–Diatomic Molecule Collinear Collision , 1972 .

[26]  Sanborn C. Brown,et al.  Physics of atomic collisions , 1972 .

[27]  R. O'ferrall,et al.  VIBRATIONAL ANALYSES OF LIQUID WATER AND THE HYDRONIUM ION IN AQUEOUS SOLUTION. , 1971 .

[28]  W. Miller Semiclassical Theory of Atom–Diatom Collisions: Path Integrals and the Classical S Matrix , 1970 .

[29]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[30]  N. Hush Reactions of molecules at electrodes , 1971 .

[31]  J. Doll,et al.  Classical S‐Matrix for Vibrational Excitation of H2 by Collision with He in Three Dimensions , 1972 .

[32]  S. Kukolich Deuterium Quadrupole Coupling in Formyl Fluoride , 1971 .

[33]  D. Rapp,et al.  A REVIEW OF THE THEORY OF VIBRATIONAL ENERGY TRANSFER BETWEEN SIMPLE MOLECULES IN NONREACTIVE COLLISIONS. , 1968 .

[34]  J. Doll,et al.  Complex‐valued classical trajectories for reactive tunneling in three‐dimensional collisions of H and H2 , 1973 .

[35]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions , 1971 .

[36]  R. Horne Kinetics of the iron (II)-iron (III) electron exchange reaction in ice media , 1963 .

[37]  D. Kouri,et al.  Comparisons of Morse and harmonic oscillator models for vibration-rotation excitation of H2 by Li+ , 1974 .

[38]  X. Chapuisat,et al.  A quantum-mechanical collinear model study of the collision N2 + O2 , 1977 .

[39]  N. Hush Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships , 1958 .

[40]  R. Levine,et al.  Quantal transition probabilities from classical trajectories: Application to the collinear reactive H + Cl2 system , 1977 .

[41]  W. Miller,et al.  Complex‐Valued Classical Trajectories for Linear Reactive Collisions of H + H2 below the Classical Threshold , 1972 .

[42]  J. Bowman,et al.  Comparison of semi-classical, exact quantum, and quasi-classical reactive transition probabilities for the collinear H + H2 reaction , 1973 .

[43]  R. Sen,et al.  On alternative activation mechanisms in electron-transfer reactions in solution , 1975 .

[44]  K. Tang,et al.  Inelastic collisions between an atom and a diatomic molecule. II. H+H2 rotational excitation , 1975 .

[45]  N. Hush,et al.  Adiabatic theory of outer sphere electron-transfer reactions in solution , 1961 .

[46]  William S. Liu Quantum theory of a collinear collision of a particle with a harmonic oscillator , 1974 .

[47]  J. Weiss On the theory of electron-transfer processes in aqueous solutions , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  J. Jortner ADDENDUM: A CONJECTURE ON ELECTRON BINDING IN AQUEOUS SOLUTIONS , 1964 .

[49]  K. Takayanagi Vibrational and rotational transitions in molecular collisions. , 1964 .

[50]  R. E. Roberts Improved Perturbation Theory for Inelastic Encounters , 1971 .

[51]  J. D. Doll,et al.  Semiclassical calculation of the harmonic oscillator transition probability for a collinear hard sphere collision , 1974 .

[52]  M. Baer Isotopic reactive systems H+Cl2 and D+Cl2. A quantum mechanical treatment of the collinear arrangement , 1974 .

[53]  M. Pattengill An application of the semiclassical approximation of the generalized phase shift treatment of rotational excitation: Ar–N2 , 1975 .

[54]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[55]  A. Rahmel,et al.  Elektrochemisches verhalten von alkali- und erdalkalisulfatschmelzen bei 800°C , 1975 .

[56]  R. J. Richards Process Dynamics and Control, vol. 2. Control System Synthesis. : Prentice-Hall, Englewood Cliffs, New Jersey, 1972 , 1974 .

[57]  A. Arvia,et al.  Potentiodynamic behaviour of graphite and platinum electrodes in sodium nitrite-potassium nitrite melts , 1974 .

[58]  D. Secrest Linear Collision of a Classical Harmonic Oscillator with a Particle at High Energies , 1969 .

[59]  J. R. Stallcop Inelastic scattering in atom‐diatomic molecule collisions. I Rotational transitions in the sudden approximation , 1974 .