Thermal Flow Sensors for Harsh Environments

Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

[1]  W. Lang,et al.  Miniaturized thermal flow sensors with through silicon vias for flip-chip packaging , 2010, 2010 IEEE Sensors.

[2]  Patrick E. Cassidy,et al.  An Overview of Polymers For Harsh Environments; Aerospace, Geothermal and Undersea , 1988 .

[3]  Henrik Kratz,et al.  A highly integratable silicon thermal gas flow sensor , 2012 .

[4]  R. Ramesham,et al.  Challenges in interconnection and packaging of microelectromechanical systems (MEMS) , 2000, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070).

[5]  Nam-Trung Nguyen,et al.  The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review , 2015, Journal of Microelectromechanical Systems.

[6]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[7]  Gerald Urban,et al.  A dynamic thermal flow sensor for simultaneous measurement of thermal conductivity and flow velocity of gases , 2014 .

[8]  Sheikh A. Akbar,et al.  Ceramic Based Resistive Sensors , 1998 .

[9]  N. Nguyen,et al.  Graphite on paper as material for sensitive thermoresistive sensors , 2015 .

[10]  Ingemar Lundström,et al.  Evaluation of gas mixtures with high-temperature gas sensors based on silicon carbide , 1994 .

[11]  S. Beeby,et al.  MEMS Mechanical Sensors , 2004 .

[12]  S. Takagi,et al.  A hot-wire anemometer compensated for ambient temperature variations , 1986 .

[13]  Roland Zengerle,et al.  Thermal flow sensors for harsh environment applications , 2009 .

[14]  J. English,et al.  Wireless micromachined ceramic pressure sensors , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[15]  P. Khiew,et al.  Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds , 2012 .

[16]  Massimo Piotto,et al.  A double heater integrated gas flow sensor with thermal feedback , 2005 .

[17]  W. Dötzel,et al.  Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors , 1997 .

[18]  Nam-Trung Nguyen A novel thermal sensor concept for flow direction and flow velocity , 2005, IEEE Sensors Journal.

[19]  Reza Ghodssi,et al.  MEMS materials and processes handbook , 2011 .

[20]  U. Schmid A robust flow sensor for high pressure automotive applications , 2002 .

[21]  Lakshmi Ponnusamy,et al.  Design and optimization of multivariable controller for CSTR system , 2015, 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE).

[22]  O. Brand,et al.  Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.

[23]  F. Udrea,et al.  Ultra-high temperature (≫ 300°C) suspended thermodiode in SOI CMOS technology , 2008, 2008 14th International Workshop on Thermal Inveatigation of ICs and Systems.

[24]  Ralf Moos,et al.  Development of LTCC-Materials and their Applications : an Overview , 2008 .

[25]  T. Gessner,et al.  High temperature stable metallization schemes for SiC-technology operating in air , 1998, 1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132).

[26]  W. Benecke,et al.  Thermoelectric Flow Sensors with Monolithically Integrated Channel Structures for Measurements of Very Small Flow Rates , 2007, 2007 IEEE Sensors.

[27]  Malgorzata Chrzanowska-Jeske,et al.  Semiconductor Devices in Harsh Conditions , 2016 .

[28]  Florin Udrea,et al.  Ultra-high temperature (>300 degreeC) suspended thermodiode in SOI CMOS technology , 2010, Microelectron. J..

[29]  Gerard C. M. Meijer,et al.  The temperature characteristics of bipolar transistors fabricated in CMOS technology , 2000 .

[30]  E. Savrun Packaging considerations for very high temperature microsystems , 2002, Proceedings of IEEE Sensors.

[31]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[32]  Jennifer M. English Wireless micromachined ceramic pressure sensors for high termperature environments , 2000 .

[33]  W. Benecke,et al.  Toward Flexible Thermoelectric Flow Sensors: A New Technological Approach , 2008, Journal of Microelectromechanical Systems.

[34]  Milad Yarali,et al.  Microfabrication of a variable range and multi-directionally sensitive thermal flow sensor , 2014 .

[35]  Babak Jamshidi Poly-crystalline silicon carbide passivated capacitive MEMS strain gauge for harsh environments , 2008 .

[36]  O. Gregory,et al.  Ceramic temperature sensors for harsh environments , 2005, IEEE Sensors Journal.

[37]  Louis Vessot King,et al.  On the Convection of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Applications to Hot-Wire Anemometry , 1914 .

[38]  Lakshmi Ponnusamy,et al.  Design and tuning of decoupled PI controllers for real time deep-sea conditions mimicking system , 2015, 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE).

[39]  J. V. Hatfield,et al.  Polyimide membrane for micro-heated gas sensor array , 2004 .

[40]  D. Flandre,et al.  SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors , 2004, IEEE Sensors Journal.

[41]  M. Allen,et al.  WIRELESS CHEMICAL SENSORS FOR HIGH TEMPERATURE ENVIRONMENTS , 2006 .

[42]  Ingemar Lundström,et al.  Gas sensitive field effect devices for high temperature , 1995 .

[43]  Edoardo Zanetti,et al.  Study of TiW/Au Thin Films Metallization Stack for High Temperature and Harsh Environment Devices on 6H Silicon Carbide , 2004 .

[44]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[45]  Muhammad Y. Afridi,et al.  Micro-differential scanning calorimeter for combustible gas sensing , 2004 .

[46]  Mehran Mehregany,et al.  Effect of MEMS-compatible thin film hard coatings on the erosion resistance of silicon micromachined atomizers , 1998 .

[47]  Andreas Roosen,et al.  Characterization and improvement of LTCC composite materials for application at elevated temperatures , 2010 .

[48]  G. Krotz,et al.  A high temperature pressure sensor with /spl beta/-SiC piezoresistors on SOI substrates , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[49]  Lei Liu,et al.  Fabrication and characterization of SiC thin films , 2011, 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[50]  Karsten Dyrbye,et al.  Protective coatings in harsh environments , 1996 .

[51]  Yingtao Jiang,et al.  Flow Rate Measurement in a High-Temperature, Radioactive, and Corrosive Environment , 2011, IEEE Transactions on Instrumentation and Measurement.

[52]  Nam-Trung Nguyen,et al.  Micromachined flow sensors—a review , 1997, Flow Measurement and Instrumentation.

[53]  R. Kassing,et al.  A high-speed mass flow sensor with heated silicon carbide bridges , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[54]  Roger T. Howe,et al.  Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments , 2007 .

[55]  A.F.P. van Putten,et al.  An integrated silicon anemometer , 1974 .

[56]  G. E. Ponchak,et al.  HIGH TEMPERATURE ELECTRONICS , COMMUNICATIONS , AND SUPPORTING TECHNOLOGIES FOR VENUS MISSIONS , 2007 .

[57]  Wolfgang Kronast,et al.  LPCVD against PECVD for micromechanical applications , 1996 .

[58]  N. Nguyen,et al.  Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications , 2017, Journal of Microelectromechanical Systems.

[59]  Robert G. Azevedo,et al.  Silicon Carbide Microsystems for Harsh Environments , 2011 .

[60]  R. Cheung,et al.  A review of silicon carbide development in MEMS applications , 2009 .

[61]  Peter Freymuth,et al.  On Feedback Control Theory for Constant Temperature Hot Wire Anemometers , 1967 .

[62]  Heng Wang,et al.  Lead telluride alloy thermoelectrics , 2011 .

[63]  Ralf Ahrens,et al.  Polymer-based micro flow sensor for dynamical flow measurements in hydraulic systems , 2010 .

[64]  B. W. Oudheusden Silicon thermal flow sensors , 1992 .

[65]  Nam-Trung Nguyen,et al.  Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring , 2017 .

[66]  Johannes G.E. Gardeniers,et al.  Measurement of reaction heats using a polysilicon-based microcalorimetric sensor , 2011 .

[67]  Sergio Silvestri,et al.  Micromachined Flow Sensors in Biomedical Applications , 2012, Micromachines.

[68]  R. E. Oosterbroek,et al.  Thermal and mechanical analysis of a microreactor for high temperature catalytic gas phase reactions , 2004 .

[69]  Ahmed N. Abdalla,et al.  Issues and temperature compensation techniques for hot wire thermal flow sensor: A review , 2011 .

[70]  Bingcheng Lin,et al.  Microfluidics : technologies and applications , 2011 .

[71]  Jan H. J. Fluitman,et al.  Multi-parameter detection in fluid flows , 1995 .

[72]  Sukhan Lee,et al.  MEMS for IT applications , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[73]  Paddy French,et al.  Precision in harsh environments , 2016, Microsystems & Nanoengineering.

[74]  Li Chen,et al.  A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications , 2007, IEEE Sensors Journal.

[75]  Raimundo Carlos Silvério Freire,et al.  Hot-wire anemometer with temperature compensation using only one sensor , 2001, IEEE Trans. Instrum. Meas..

[76]  O M Williams,et al.  A hot wire sensor for liquid level detection , 1976 .

[77]  Péter Fürjes,et al.  Thermal characterisation of a direction dependent flow sensor , 2004 .

[78]  Reinhart Job,et al.  Sensors and smart electronics in harsh environment applications , 2001 .

[79]  Albert P. Pisano,et al.  Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C , 2014 .

[80]  B. Jamshidi,et al.  Corrosion Enhanced Capacitive Strain Gauge at 370°C , 2007, 2007 IEEE Sensors.

[81]  Roya Maboudian,et al.  Lubrication of polycrystalline silicon MEMS via a thin silicon carbide coating , 2013 .

[82]  Jan G. Korvink,et al.  MEMS: A Practical Guide to Design, Analysis, and Applications , 2005 .

[83]  M. A. Ryan A Variable Potential Porous Silicon Carbide Hydrocarbon Gas Sensor , 1995 .

[84]  Frédérick Mailly,et al.  Anemometer with hot platinum thin film , 2001 .

[85]  M.A.P. Pertijs,et al.  Precision temperature measurement using CMOS substrate pnp transistors , 2004, IEEE Sensors Journal.

[86]  S. D. Wolter,et al.  High temperature Pt Schottky diode gas sensors on n-type GaN , 1999 .

[87]  Gwiy-Sang Chung,et al.  Fabrication and characteristics of Pt/ZnO NO sensor integrated SiC micro heater , 2010, 2010 IEEE Sensors.

[88]  Man I Lei,et al.  Silicon Carbide High Temperature Thermoelectric Flow Sensor , 2011 .

[89]  M. Itoh,et al.  SiC thin-film thermistors , 1990 .

[90]  Gerald Urban,et al.  Development of miniaturized semiconductor flow sensors , 2003 .

[91]  Ming Qin,et al.  2-D Micromachined Thermal Wind Sensors—A Review , 2014, IEEE Internet of Things Journal.

[92]  Saikat Maitra,et al.  OXIDATION BEHAVIOUR OF SILICON CARBIDE - A REVIEW , 2014 .

[93]  Florin Udrea,et al.  SOI multidirectional thermoelectric flow sensor for harsh environment applications , 2015, 2015 International Semiconductor Conference (CAS).

[94]  Anders Persson,et al.  High-temperature zirconia microthruster with an integrated flow sensor , 2013 .

[95]  Carles Cané,et al.  Multi-range silicon micromachined flow sensor , 2004 .

[96]  M. Ritterath,et al.  Robust thermal flow sensor for a containment test facility , 2009, 2009 IEEE Sensors.

[97]  Florin Udrea,et al.  High-Sensitivity Single Thermopile SOI CMOS MEMS Thermal Wall Shear Stress Sensor , 2015, IEEE Sensors Journal.

[98]  Zhengchun Peng,et al.  Simulation and Fabrication of an Ultra-Low Power Miniature Microbridge Thermal Conductivity Gas Sensor , 2014 .

[99]  W. Benecke,et al.  Miniaturised Thermal Flow Sensors for Rough Environments , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[100]  Massimo Piotto,et al.  Postprocessing, readout and packaging methods for integrated gas flow sensors , 2009, Microelectron. J..

[101]  Wolfgang R. Fahrner,et al.  Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications , 2001, IEEE Trans. Ind. Electron..

[102]  Takamoto Furuichi,et al.  Thin-Film Air Flow Sensors for Automotive using the MEMS Technologies , 2015 .

[103]  Joseph Johnson,et al.  High-Temperature Piezoelectric Sensing , 2013, Sensors.

[104]  Massimo Piotto,et al.  Design Issues for Low Power Integrated Thermal Flow Sensors with Ultra-Wide Dynamic Range and Low Insertion Loss , 2012, Micromachines.

[105]  Dongsik Kim,et al.  Development of a micro liquid-level sensor for harsh environments using a periodic heating technique , 2010 .

[106]  W. Lang,et al.  Thermoelectric Flow Sensor Integrated Into an Inductively Powered Wireless System , 2012, IEEE Sensors Journal.

[107]  Li-dong Zhao,et al.  Thermoelectric materials: Energy conversion between heat and electricity , 2015 .

[108]  V. Pathirana,et al.  Experimental, analytical and numerical investigation of non-linearity of SOI diode temperature sensors at extreme temperatures , 2015 .

[109]  R. V. Konakova,et al.  Ge-film resistance and Si-based diode temperature microsensors for cryogenic applications , 2001 .

[110]  Nam-Trung Nguyen,et al.  Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating , 2017 .

[111]  Carles Cané,et al.  Characterization of thermal conductivity in thin film multilayered membranes , 2005 .

[112]  K. Najafi,et al.  A passive humidity monitoring system for in-situ remote wireless testing of micropackages , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[113]  Nantawan Therdthai,et al.  The development of an anemometer for industrial bread baking , 2004 .

[114]  B. Jamshidi,et al.  Silicon carbide coated MEMS strain sensor for harsh environment applications , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[115]  Karsten Dyrbye,et al.  Packaging of physical sensors for aggressive media applications , 1996 .

[116]  W. Benecke,et al.  A high-temperature thermopile fabrication process for thermal flow sensors , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[117]  Steven L. Garverick,et al.  Extreme temperature 6H‐SiC JFET integrated circuit technology , 2009 .

[118]  Anthony D. Kurtz,et al.  Operation of α(6H)-SiC pressure sensor at 500 °C , 1998 .

[119]  T. G. Brown,et al.  Harsh military environments and microelectromechanical (MEMS) devices , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[120]  Miao Ying,et al.  RETRACTED: Quick, Temperature Independent Flow Sensor , 2011 .

[121]  Ferran Reverter,et al.  On-Chip Thermal Testing Using MOSFETs in Weak Inversion , 2015, IEEE Transactions on Instrumentation and Measurement.

[122]  Z. Stanimirović,et al.  Mechanical Properties of MEMS Materials , 2009 .

[123]  Ingemar Lundström,et al.  Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices , 1993 .

[124]  Ferran Reverter,et al.  MOSFET temperature sensors for on-chip thermal testing , 2013 .

[125]  Mark G. Allen,et al.  Wireless Ceramic Sensors Operating in High Temperature Environments , 2004 .

[126]  Antonio Feteira,et al.  Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective , 2009 .

[127]  T. M. Berlicki,et al.  Thermoresistive Thin Film Flow Sensor , 1989 .

[128]  Nam-Trung Nguyen,et al.  Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating , 2016, Scientific Reports.

[129]  X.M. Jing,et al.  An aerodynamically efficient sphere anemometer with integrated hot-film sensors for 2-D environmental airflow monitoring , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[130]  Fang-Bor Weng,et al.  Analysis of thermal balance in high-temperature proton exchange membrane fuel cells with short stacks via in situ monitoring with a flexible micro sensor , 2014 .

[131]  Igor Paprotny,et al.  MEMS flow sensors with silicon-carbide erosion resistant coating , 2015, 2015 IEEE SENSORS.

[132]  Ulrich Schmid,et al.  A volumetric flow sensor for automotive injection systems , 2008 .

[133]  Kevin T. Kornegay,et al.  Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers , 2003 .