Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy.

For fast separation of the photogenerated charge carriers, metal semiconductor heterostructures have emerged as one of the leading materials in recent years. Among these, metal Au coupled with low bandgap semiconductors remain as ideal materials where both can absorb the solar light in the visible region. It is also established that on excitation, the plasmonic state of gold interacts with excited state of semiconductor and helps for the delocalization of the photogenerated electrons. Focusing these materials where electron transfer preferably occurs from semiconductor to metal Au on excitation, in this Perspective, we report the latest developments in the synthetic chemistry in designing such nano heterostructures and discuss their photocatalytic activities in organic dye degradation/reduction and/or photocatalytic water splitting for generation of hydrogen. Among these, materials such as Au-CZTS, Au-SnS, Au-Bi2S3, Au-ZnSe, and so forth are emphasized, and their formation chemistry as well as their photocatalytic activities are discussed in this Perspective.

[1]  P. Cottrell,et al.  Untitled #2 , 2020, Gender Futurity, Intersectional Autoethnography.

[2]  N. Pradhan,et al.  Coincident Site Epitaxy at the Junction of Au–Cu2ZnSnS4 Heteronanostructures , 2015 .

[3]  Anirban Dutta,et al.  Au-SnS Hetero Nanostructures: Size of Au Matters , 2014 .

[4]  Nripan Mathews,et al.  On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting. , 2014, The journal of physical chemistry letters.

[5]  Angshuman Nag,et al.  Seeded-growth, nanocrystal-fusion, ion-exchange and inorganic-ligand mediated formation of semiconductor-based colloidal heterostructured nanocrystals , 2014 .

[6]  Ying Dai,et al.  Synthesis and Activity of Plasmonic Photocatalysts , 2014 .

[7]  Malinda D. Reichert,et al.  Cu2ZnSnS4−Au Heterostructures: Toward Greener Chalcogenide- Based Photocatalysts , 2014 .

[8]  Frank E. Osterloh,et al.  Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. , 2014, The journal of physical chemistry letters.

[9]  E. Stach,et al.  Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. , 2014, Angewandte Chemie.

[10]  Jason M. Smith,et al.  Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. , 2014, Angewandte Chemie.

[11]  T. Ishihara,et al.  Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. , 2014, The journal of physical chemistry letters.

[12]  H. Tada,et al.  Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. , 2014, Angewandte Chemie.

[13]  Zhengxiao Guo,et al.  Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride , 2014, Angewandte Chemie (International Ed. in English).

[14]  N. Pradhan,et al.  Photocatalytic Au-Bi2S3 heteronanostructures. , 2014, Angewandte Chemie.

[15]  Xiaoqiang An,et al.  Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. , 2014, Journal of the American Chemical Society.

[16]  X. Ou,et al.  Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation. , 2014, ACS applied materials & interfaces.

[17]  Brunno L. Albuquerque,et al.  Screening the Formation of Silver Nanoparticles Using a New Reaction Kinetics Multivariate Analysis and Assessing Their Catalytic Activity in the Reduction of Nitroaromatic Compounds , 2014 .

[18]  Fenghua Li,et al.  Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure , 2014, Advanced materials.

[19]  A. Manivannan,et al.  Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. , 2014, Journal of the American Chemical Society.

[20]  G. P. Das,et al.  Heteroepitaxial Junction in Au-ZnSe Nanostructure: Experiment versus First-Principle Simulation. , 2014, The journal of physical chemistry letters.

[21]  S. Sapra,et al.  Photocatalysis from Fluorescence-Quenched CdSe/Au Nanoheterostructures: A Size-Dependent Study. , 2014, The journal of physical chemistry letters.

[22]  T. Tachikawa,et al.  Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. , 2014, Journal of the American Chemical Society.

[23]  R. Amal,et al.  Exploring the Origin of Enhanced Activity and Reaction Pathway for Photocatalytic H2 Production on Au/B-TiO2 Catalysts , 2014 .

[24]  Omid Zandi,et al.  Enhanced Water Splitting Efficiency Through Selective Surface State Removal. , 2014, The journal of physical chemistry letters.

[25]  Frank E. Osterloh,et al.  Photochemical Charge Separation in Nanocrystal Photocatalyst Films: Insights from Surface Photovoltage Spectroscopy. , 2014, The journal of physical chemistry letters.

[26]  J. Vela,et al.  Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. , 2014, Journal of the American Chemical Society.

[27]  Uri Banin,et al.  Hybrid Semiconductor–Metal Nanoparticles: From Architecture to Function , 2014 .

[28]  T. Tachikawa,et al.  Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. , 2014, Journal of the American Chemical Society.

[29]  M. Xing,et al.  Enhanced Photocatalysis by Au Nanoparticle Loading on TiO2 Single-Crystal (001) and (110) Facets , 2013 .

[30]  N. Pradhan,et al.  Hybrid Nanostructures: Formation of Heteroepitaxy in Different Shapes of Au–CdSe Metal–Semiconductor Hybrid Nanostructures (Small 20/2013) , 2013 .

[31]  Tianquan Lian,et al.  Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. , 2013, Nano letters.

[32]  G. Henkelman,et al.  CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111) , 2013 .

[33]  A. Alexandrova,et al.  The Golden Crown: A Single Au Atom that Boosts the CO Oxidation Catalyzed by a Palladium Cluster on Titania Surfaces , 2013 .

[34]  K. Maeda Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts , 2013 .

[35]  D. Marx,et al.  On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water. , 2013, The journal of physical chemistry letters.

[36]  S. Boettcher,et al.  An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts. , 2013, The journal of physical chemistry letters.

[37]  G. Henkelman,et al.  CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. , 2013, The journal of physical chemistry letters.

[38]  T. Tachikawa,et al.  Role of Interparticle Charge Transfers in Agglomerated Photocatalyst Nanoparticles: Demonstration in Aqueous Suspension of Dye-Sensitized TiO2. , 2013, The journal of physical chemistry letters.

[39]  K. Domen,et al.  Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. , 2012, Journal of the American Chemical Society.

[40]  Dunwei Wang,et al.  Improving Hematite's Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. , 2012, The journal of physical chemistry letters.

[41]  Jae-Hong Kim,et al.  Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. , 2012, Journal of the American Chemical Society.

[42]  Ping Liu,et al.  CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. , 2012, The journal of physical chemistry letters.

[43]  Ming Lin,et al.  Unusual Selectivity of Metal Deposition on Tapered Semiconductor Nanostructures , 2012 .

[44]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[45]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[46]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[47]  T. Sum,et al.  Engineering fluorescence in Au-tipped, CdSe-seeded CdS nanoheterostructures. , 2011, Small.

[48]  M. Ikeuchi,et al.  Photosystem II–Gold Nanoparticle Conjugate as a Nanodevice for the Development of Artificial Light-Driven Water-Splitting Systems , 2011 .

[49]  Jiaguo Yu,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. , 2011, Journal of the American Chemical Society.

[50]  S. Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[51]  Xinheng Li,et al.  Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods. , 2011, Journal of the American Chemical Society.

[52]  Jia X Wang,et al.  Enhancing Oxygen Reduction Reaction Activity via Pd−Au Alloy Sublayer Mediation of Pt Monolayer Electrocatalysts , 2010 .

[53]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[54]  L. Manna,et al.  Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. , 2010, Nano letters.

[55]  U. Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[56]  M. Ouyang,et al.  Tailoring light–matter–spin interactions in colloidal hetero-nanostructures , 2010, Nature.

[57]  Y. M. Tan,et al.  Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods. , 2010, Angewandte Chemie.

[58]  H. Sugihara,et al.  Cs-Modified WO3 Photocatalyst Showing Efficient Solar Energy Conversion for O2 Production and Fe (III) Ion Reduction under Visible Light , 2010 .

[59]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[60]  Lin-wang Wang,et al.  Enhanced semiconductor nanocrystal conductance via solution grown contacts. , 2009, Nano letters.

[61]  Jianwei Sun,et al.  Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. , 2009, Journal of the American Chemical Society.

[62]  M. H. Yeung,et al.  A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. , 2009, Angewandte Chemie.

[63]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[64]  Ting Yang,et al.  Au-CdS Core-Shell Nanocrystals with Controllable Shell Thickness and Photoinduced Charge Separation Property , 2008 .

[65]  E. Shevchenko,et al.  Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. , 2008, Journal of the American Chemical Society.

[66]  Uri Banin,et al.  Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. , 2008, Nano letters.

[67]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[68]  P. Cozzoli Seeded Growth of Asymmetric Binary Nanocrystals Made of a Semiconductor TiO2 Rodlike Section and a Magnetic γ-Fe2O3 Spherical Domain. , 2007 .

[69]  Liberato Manna,et al.  Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures , 2007 .

[70]  M. L. Curri,et al.  Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic gamma-Fe2O3 spherical domain. , 2006, Journal of the American Chemical Society.

[71]  T. Pellegrino,et al.  Heterodimers based on CoPt3-Au nanocrystals with tunable domain size. , 2006, Journal of the American Chemical Society.

[72]  M. L. Curri,et al.  Synthesis of TiO2-Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces. , 2006, Small.

[73]  A. Kornowski,et al.  Site-specific photodeposition of silver on ZnO nanorods. , 2004, Angewandte Chemie.

[74]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[75]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[76]  P. Kamat,et al.  Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level , 2003 .

[77]  N. Pradhan,et al.  Silver nanoparticle catalyzed reduction of aromatic nitro compounds , 2002 .

[78]  Prashant V. Kamat,et al.  Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films? , 2001 .

[79]  N. Pradhan,et al.  Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles , 2001 .

[80]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[81]  Z. Ren,et al.  Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. , 2014, Nature nanotechnology.

[82]  F. Castellano,et al.  ScholarWorks@BGSU ScholarWorks@BGSU , 2022 .