An upper bound for the minimum weight of the dual codes of desarguesian planes

We show that a construction described in [K.L. Clark, J.D. Key, M.J. de Resmini, Dual codes of translation planes, European J. Combin. 23 (2002) 529-538] of small-weight words in the dual codes of finite translation planes can be extended so that it applies to projective and affine desarguesian planes of any order p^m where p is a prime, and m>=1. This gives words of weight 2p^m+1-p^m-1p-1 in the dual of the p-ary code of the desarguesian plane of order p^m, and provides an improved upper bound for the minimum weight of the dual code. The same will apply to a class of translation planes that this construction leads to; these belong to the class of Andre planes. We also found by computer search a word of weight 36 in the dual binary code of the desarguesian plane of order 32, thus extending a result of Korchmaros and Mazzocca [Gabor Korchmaros, Francesco Mazzocca, On (q+t)-arcs of type (0,2,t) in a desarguesian plane of order q, Math. Proc. Cambridge Philos. Soc. 108 (1990) 445-459].

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[3]  Johannes André,et al.  Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .

[4]  Jennifer D. Key,et al.  Dual codes of projective planes of order 25 , 2003 .

[5]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[6]  Aart Blokhuis,et al.  On Sets without Tangents in Galois Planes of Even Order , 2003, Des. Codes Cryptogr..

[7]  Jennifer D. Key,et al.  Small sets of even type and codewords , 1998 .

[8]  Mohammed S. EL-Atrash,et al.  Linear Codes over Finite Fields , 2018, Designs from Linear Codes.

[9]  Marialuisa J. de Resmini,et al.  Hyperovals and Unitals in Figueroa Planes , 1998, Eur. J. Comb..

[10]  Jirapha Limbupasiriporn Partial Permutation Decoding for Codes from Designs and Finite Geometries , 2005 .

[11]  Howard E. Sachar,et al.  The Fp span of the incidence matrix of a finite projective plane , 1979 .

[12]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[13]  T. Szonyi Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .

[14]  Jennifer D. Key,et al.  Ternary dual codes of the planes of order nine , 2001 .

[15]  Gábor Korchmáros,et al.  On (q + t)-arcs of type (0, 2, t) in a desarguesian plane of order q , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Dennis Saleh Zs , 2001 .

[17]  K. L. Clark Geometric Codes over Fields of Odd Prime Power Order , 2003 .

[18]  Jennifer D. Key,et al.  A lower bound for the minimum weight of the dual 7-ary code of a projective plane of order 49 , 2007, Des. Codes Cryptogr..

[19]  R. Figueroa,et al.  A family of not (V, ℓ) projective planes of orderq3,q ≢ 1 (mod 3) andq>2 , 1982 .

[20]  András Gács,et al.  On (q + t, t)-Arcs of Type (0, 2, t) , 2003, Des. Codes Cryptogr..

[21]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[22]  Marialuisa J. de Resmini,et al.  Dual Codes of Translation Planes , 2002, Eur. J. Comb..

[23]  J. D. Key,et al.  An upper bound for the minimum weight of dual codes of Figueroa planes , 2003 .