AlGaN Channel HEMT With Extremely High Breakdown Voltage

Enhanced performance of RF power modules is required in a next-generation information society. To satisfy these requirements, we designed a novel high-electron mobility transistor (HEMT) structure employing wider bandgap AlGaN for a channel layer, which we called AlGaN channel HEMT, and investigated it. The wider bandgap is more effective for higher voltage operation of HEMTs and contributes to the increase of output power in RF power modules. As a result, fabricated AlGaN channel HEMTs had much higher breakdown voltages than those of conventional GaN channel HEMTs with good pinchoff operation and sufficiently high drain current density without noticeable current collapse. Furthermore, specific on-state resistances of fabricated AlGaN channel HEMTs were competitive with the best values of reported GaN- and SiC-based devices with similar breakdown voltages. These results indicate that the proposed AlGaN channel HEMTs are very promising not only for an information-communication society but also in the power electronics field.

[1]  Umesh K. Mishra,et al.  Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB , 2001 .

[2]  T. Egawa,et al.  Highly resistive GaN layers formed by ion implantation of Zn along the c axis , 2003 .

[3]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[4]  A. Agarwal,et al.  SiC Power Devices – An Overview , 2004 .

[5]  M. Higashiwaki,et al.  Cat-CVD SiN-passivated AlGaN-GaN HFETs with thin and high Al composition barrier Layers , 2005, IEEE Electron Device Letters.

[6]  Y. Uemoto,et al.  AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure , 2005, IEEE Transactions on Electron Devices.

[7]  H. Minami,et al.  A C-Band AlGaN/GaN HEMT with Cat-CVD SiN Passivation Developed for an Over 100 W Operation , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[8]  Toshihide Kikkawa,et al.  Highly Reliable 250 W GaN High Electron Mobility Transistor Power Amplifier , 2005 .

[9]  S. Sano,et al.  A 500W Push-Pull AlGaN/GaN HEMT Amplifier for L-Band High Power Application , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[10]  S. Keller,et al.  High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates , 2006, IEEE Electron Device Letters.

[11]  K. Arai,et al.  700-V 1.0-$hboxmOmega cdot hboxcm^2$Buried Gate SiC-SIT (SiC-BGSIT) , 2006, IEEE Electron Device Letters.

[12]  K. Suzuki,et al.  1.8 mΩcm2, 10 A Power MOSFET in 4H-SiC , 2006, 2006 International Electron Devices Meeting.

[13]  M. Higashiwaki,et al.  AlGaN/GaN MIS-HFETs with f/sub T/ of 163 GHz using cat-CVD SiN gate-insulating and passivation Layers , 2006, IEEE Electron Device Letters.

[14]  Y. Tokuda,et al.  Ion implantation doping for AlGaN/GaN HEMTs , 2006 .

[15]  S. Keller,et al.  High-Breakdown Enhancement-Mode AlGaN/GaN HEMTs with Integrated Slant Field-Plate , 2006, 2006 International Electron Devices Meeting.

[16]  G. Simin,et al.  The 1.6-kV AlGaN/GaN HFETs , 2006, IEEE Electron Device Letters.

[17]  H. Matsuo,et al.  650 V 3.1 mΩcm2 GaN-based monolithic bidirectional switch using normally-off gate injection transistor , 2007, 2007 IEEE International Electron Devices Meeting.

[18]  C-doped semi-insulating GaN HFETs on sapphire substrates with a high breakdown voltage and low specific on-resistance , 2007 .

[19]  H. Matsuo,et al.  8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation , 2007, 2007 IEEE International Electron Devices Meeting.

[20]  Y. Isota,et al.  C-band GaN HEMT Power Amplifier with 220W Output Power , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[21]  M. Suita,et al.  Remarkable Breakdown Voltage Enhancement in AlGaN Channel HEMTs , 2007, 2007 IEEE International Electron Devices Meeting.

[22]  T. Nakamura,et al.  Remarkable Reduction of On-Resistance by Ion Implantation in GaN/AlGaN/GaN HEMTs With Low Gate Leakage Current , 2007, IEEE Electron Device Letters.

[23]  James S. Speck,et al.  AlGaN Channel High Electron Mobility Transistors: Device Performance and Power-Switching Figure of Merit , 2008 .

[24]  K. Yamanaka,et al.  GaN X-band 43% internally-matched FET with 60W output power , 2008, 2008 Asia-Pacific Microwave Conference.

[25]  Y. Aoyagi,et al.  Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors , 2008 .

[26]  Peter Friedrichs,et al.  SiC JFET: Currently the Best Solution for an Unipolar SiC High Power Switch , 2008 .

[27]  Y. Aoyagi,et al.  First Operation of AlGaN Channel High Electron Mobility Transistors , 2008 .

[28]  Y. Tokuda,et al.  Application of lightly doped drain structure to AIGaN/GaN HEMTs by ion implantation technique , 2008 .

[29]  Kiichi Yoshiara,et al.  Drivability Enhancement for AlGaN/GaN High-Electron Mobility Transistors with AlN Spacer Layer Using Si Ion Implantation Doping , 2009 .

[30]  Y. Aoyagi,et al.  AlGaN channel HEMTs on AlN buffer layer with sufficiently low off-state drain leakage current , 2009 .

[31]  E. Yagyu,et al.  Comparison of characteristics of AIGaN channel HEMTs formed on SiC and sapphire substrates , 2009 .

[32]  Toshikazu Mukai,et al.  4H-SiC Trench Metal Oxide Semiconductor Field Effect Transistors with Low On-Resistance , 2009 .

[33]  S. Goto,et al.  A 68% efficiency, C-band 100W GaN power amplifier for space applications , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[34]  Yoshihiro Sato,et al.  GaN Power Transistors on Si Substrates for Switching Applications , 2010, Proceedings of the IEEE.

[35]  S. Hashimoto,et al.  High Al Composition AlGaN-Channel High-Electron-Mobility Transistor on AlN Substrate , 2010 .

[36]  E. Yagyu,et al.  Enhancement of Drain Current by an AlN Spacer Layer Insertion in AlGaN/GaN High-Electron-Mobility Transistors with Si-Ion-Implanted Source/Drain Contacts , 2011 .