The Ladder of Life Detection

Abstract We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.

[1]  P. Luisi About Various Definitions of Life , 1998, Origins of life and evolution of the biosphere.

[2]  Manuel Bedrossian,et al.  Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds , 2017, Astrobiology.

[3]  Brent D. Ziarnick When Biospheres Collide: A History of NASA's Planetary Protection Program , 2014 .

[4]  B. Nagy,et al.  A study of the optical rotation of lipids extracted from soils, sediments, and the orgueil carbonaceous meteorite. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Nealson,et al.  A non-earthcentric approach to life detection. , 2001, Astrobiology.

[6]  Patricia Beauchamp,et al.  Assessing planetary protection and contamination control technologies for planetary science missions , 2013, 2013 IEEE Aerospace Conference.

[7]  E. Mosley‐Thompson,et al.  Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. , 2001, Environmental microbiology.

[8]  Dominique Raynaud,et al.  DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments , 2004, International Journal of Astrobiology.

[9]  Robert G. Griffin,et al.  2D and 3D 15N-13C-13C NMR chemical shift correlation spectroscopy of solids: Assignment of MAS spectra of peptides , 2000 .

[10]  Richard Wolfenden,et al.  Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases , 1996 .

[11]  C. Szopa,et al.  MOMA: the challenge to search for organics and biosignatures on Mars , 2016, International Journal of Astrobiology.

[12]  Sherry L. Cady,et al.  Geobiology: Evidence for Early Life on Earth and the Search for Life on Other Planets , 2009 .

[13]  R. D. Kidd,et al.  Ion chromatography-on-a-chip for water quality analysis , 2015 .

[14]  Sara Seager,et al.  The search for signs of life on exoplanets at the interface of chemistry and planetary science , 2015, Science Advances.

[15]  Dennis R. Dean,et al.  Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage , 2014, Chemical reviews.

[16]  Chris McKay,et al.  What Is Life—and How Do We Search for It in Other Worlds? , 2004, PLoS biology.

[17]  Anna Fedorova,et al.  ACS experiment for atmospheric studies on “ExoMars-2016” Orbiter , 2015 .

[18]  D. Blackmond,et al.  The origin of biological homochirality. , 2010, Cold Spring Harbor perspectives in biology.

[19]  Steven A. Benner,et al.  Detecting Darwinism from Molecules in the Enceladus Plumes, Jupiter's Moons, and Other Planetary Water Lagoons , 2017, Astrobiology.

[20]  Deborah S. Kelley,et al.  Incidence and Diversity of Microorganisms within the Walls of an Active Deep-Sea Sulfide Chimney , 2003, Applied and Environmental Microbiology.

[21]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[22]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[23]  J. William Schopf,et al.  Biogenicity of Earth's earliest fossils: A resolution of the controversy , 2012 .

[24]  Andrew Steele,et al.  Morphological biosignatures and the search for life on Mars. , 2003, Astrobiology.

[25]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[26]  D. Gurnett,et al.  The search for life in the solar system. , 2009, Transactions of the American Clinical and Climatological Association.

[27]  Samuel P. Kounaves,et al.  Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics , 2014 .

[28]  Kenneth H. Nealson,et al.  Viking's Experiments and Hypothesis that Fe(VI) Is a Possible Candidate as a Martian Oxidant , 2002 .

[29]  D P Glavin,et al.  Amino acids in the Martian meteorite Nakhla. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Willis,et al.  Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. , 2012, Chemical reviews.

[31]  Yosuke Hoshino,et al.  Reappraisal of hydrocarbon biomarkers in Archean rocks , 2015, Proceedings of the National Academy of Sciences.

[32]  Michael C. Storrie-Lombardi,et al.  Multivariate analysis of elemental chemistry as a robust biosignature , 2003 .

[33]  J. C. McConnell,et al.  Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission , 2015 .

[34]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[35]  Tanmoy Bhattacharya,et al.  The Emergence of Life as a First-Order Phase Transition. , 2015, Astrobiology.

[36]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[37]  T. M. Hoehler Biosignatures in the Context of Low Energy Flux , 2017 .

[38]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[39]  S. Pizzarello,et al.  Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites , 2016, Life.

[40]  M. Siegert,et al.  A large deep freshwater lake beneath the ice of central East Antarctica , 1996, Nature.

[41]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[42]  Giuseppe Etiope,et al.  Methane Seepage on Mars: Where to Look and Why , 2017, Astrobiology.

[43]  Vicki H. Wysocki,et al.  Fragmentation of protonated oligopeptides XLDVLQ (X=L, H, K or R) by surface induced dissociation: additional evidence for the 'mobile proton' model , 1999 .

[44]  Linda Neuman Ezell,et al.  On Mars: Exploration of the Red Planet 1958-1978 , 1986 .

[45]  Frank J Grunthaner,et al.  Perchlorate radiolysis on Mars and the origin of martian soil reactivity. , 2013, Astrobiology.

[46]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[47]  Jennifer L. Eigenbrode,et al.  Fossil Lipids for Life-Detection: A Case Study from the Early Earth Record , 2008 .

[48]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Owen The Search for Early Forms of Life in Other Planetary Systems: Future Possibilities Afforded by Spectroscopic Techniques , 1980 .

[50]  Tom Herbst,et al.  The far future of exoplanet direct characterization. , 2010, Astrobiology.

[51]  Christopher P McKay,et al.  Follow the plume: the habitability of Enceladus. , 2014, Astrobiology.

[52]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[53]  M. Rosing,et al.  Strategies of Life Detection , 2008 .

[54]  Ronald Breslow,et al.  On the origin of terrestrial homochirality for nucleosides and amino acids , 2009, Proceedings of the National Academy of Sciences.

[55]  D. Deamer,et al.  Lipids as universal biomarkers of extraterrestrial life. , 2014, Astrobiology.

[56]  J. Elser,et al.  Ordinary stoichiometry of extraordinary microorganisms , 2016, Geobiology.

[57]  Barbara Sherwood Lollar,et al.  Is Mars alive , 2006 .

[58]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[59]  Gilbert V. Levin,et al.  Recent results from the Viking Labeled Release experiment on Mars , 1977 .

[60]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[61]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[62]  Jan Hendrik Bredehöft,et al.  Identification of diamino acids in the Murchison meteorite. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Hiroshi Iwamura,et al.  Thermodynamic control of asymmetric amplification in amino acid catalysis , 2006, Nature.

[64]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[65]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[66]  Frances Westall,et al.  Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of potential microbial biosignatures , 2012 .

[67]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[68]  J. Bréhéret,et al.  Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life , 2015, Astrobiology.

[69]  Paul Mahaffy,et al.  Science priorities for Mars sample return. , 2008, Astrobiology.

[70]  Thomas M. McCollom,et al.  Abiotic methane formation during experimental serpentinization of olivine , 2016, Proceedings of the National Academy of Sciences.

[71]  Martin J. Siegert,et al.  The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes , 2003 .

[72]  M S Pepe,et al.  Phases of biomarker development for early detection of cancer. , 2001, Journal of the National Cancer Institute.

[73]  Guang Zeng,et al.  Evidence for the natural toxins from the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan Province, China. , 2012, Angewandte Chemie.

[74]  L. Ljungdahl,et al.  Total synthesis of acetate from CO2 by heterotrophic bacteria. , 1969, Annual review of microbiology.

[75]  Edward W. Schwieterman,et al.  False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth , 2017, Astrobiology.

[76]  Paul R. Mahaffy,et al.  Methane and related trace species on Mars: Origin, loss, implications for life, and habitability , 2007 .

[77]  Andrew Steele,et al.  Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater , 2013 .

[78]  H. Klein The Viking biological experiments on Mars , 1978 .

[79]  J L Bada,et al.  Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct martian biota. , 1995, Icarus.

[80]  I. T. ten Kate,et al.  Organics on Mars? , 2010, Astrobiology.

[81]  S. Fleck Foreword , 1957, The Yale Journal of Biology and Medicine.

[82]  Addy Pross,et al.  Toward a general theory of evolution: Extending Darwinian theory to inanimate matter , 2011 .

[83]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[84]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[85]  Edward D. Young,et al.  The relative abundances of resolved l2 CH 2 D 2 and 13 CH 3 D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases , 2016 .

[86]  C. McKay,et al.  The Chemical Reactivity of the Martian Soil and Implications for Future Missions , 1994 .

[87]  Gilbert V Levin,et al.  The curiousness of Curiosity. , 2015, Astrobiology.

[88]  J. Lederberg,et al.  Exobiology: approaches to life beyond the earth. , 1960, Science.

[89]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[90]  Carol E. Cleland,et al.  Defining ‘Life’ , 2004, Origins of life and evolution of the biosphere.

[91]  Everett Shock,et al.  The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. , 2010, Cold Spring Harbor perspectives in biology.

[92]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[93]  Z. Sharp,et al.  Principles of Stable Isotope Geochemistry , 2006 .

[94]  Gilbert V Levin,et al.  The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. , 2016, Astrobiology.

[95]  J. Kasting,et al.  ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? , 2015, 1509.07863.

[96]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[97]  R. Bowden,et al.  A Reduced Organic Carbon Component in Martian Basalts , 2012, Science.

[98]  Steven J Dick NASA and the search for life in the universe. , 2006, Endeavour.

[99]  J. Brocks,et al.  Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? , 2011 .

[100]  S. Martínez-Rodríguez,et al.  Natural Occurrence and Industrial Applications of d‐Amino Acids: An Overview , 2010, Chemistry & biodiversity.

[101]  Stephen T Hyde,et al.  Morphology: an ambiguous indicator of biogenicity. , 2002, Astrobiology.

[102]  Ronald Breslow,et al.  Amplification of enantiomeric concentrations under credible prebiotic conditions , 2006, Proceedings of the National Academy of Sciences.

[103]  E. Ford,et al.  Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. , 2005, Astrobiology.

[104]  Cynthia B. Phillips,et al.  Europa as an Abode of Life , 2004, Origins of life and evolution of the biosphere.

[105]  John Robert Brucato,et al.  The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.

[106]  Sherry L. Cady,et al.  Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life , 2014 .

[107]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[108]  A. I. Tsapin,et al.  Limnological conditions in Subglacial Lake Vostok, Antarctica , 2006 .

[109]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[110]  Benoit Beauchamp,et al.  Supraglacial sulfur springs and associated biological activity in the Canadian high arctic-signs of life beneath the ice. , 2003, Astrobiology.

[111]  George L. Hobby,et al.  Viking on Mars: The carbon assimilation experiments , 1977 .

[112]  G. C. Carle,et al.  The search for life on Mars: Viking 1976 gas changes as indicators of biological activity , 1976, Origins of life.

[113]  Kenneth H Nealson,et al.  Microbial metal-ion reduction and Mars: extraterrestrial expectations? , 2002, Current opinion in microbiology.

[114]  R. N. Zare,et al.  Evaluating the Evidence for Past Life on Mars , 1996, Science.

[115]  Harry Y. McSween,et al.  A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.

[116]  F. S. Brown,et al.  The Viking Biological Investigation: Preliminary Results , 1976, Science.

[117]  D. Cole,et al.  Rates and Mechanisms of Isotopic Exchange , 2001 .

[118]  H. Y. McSween,et al.  Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy , 2017, Science.

[119]  Faegheh Moazeni,et al.  Imperfect asymmetry of life: earth microbial communities prefer D-lactate but can use L-lactate also. , 2010, Astrobiology.

[120]  Harm Hinrich Rotermund,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and a-FeOOH , 2001 .

[121]  David Jones,et al.  Play it again, Sam , 1990, Nature.

[122]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[123]  L. N. Matveeva,et al.  The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[124]  L Becker,et al.  Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice , 1997, Optics & Photonics.

[125]  David Wacey,et al.  Changing the picture of Earth's earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries , 2015, Proceedings of the National Academy of Sciences.

[126]  John Parnell,et al.  Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory. , 2014, Astrobiology.

[127]  H. Vonhof,et al.  A Test of the Biogenicity Criteria Established for Microfossils and Stromatolites on Quaternary Tufa and Speleothem Materials Formed in the "Twilight Zone" at Caerwys, UK. , 2015, Astrobiology.

[128]  Pratim K. Chattaraj,et al.  Chemical Reactivity , 2005 .

[129]  Bonnie J. Berdahl,et al.  The Viking Gas Exchange Experiment results from Chryse and Utopia surface samples , 1977 .

[130]  Dawn Y Sumner,et al.  Preservation of martian organic and environmental records: final report of the Mars biosignature working group. , 2011, Astrobiology.

[131]  J L Bada,et al.  Preservation of key biomolecules in the fossil record: current knowledge and future challenges. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[132]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[133]  Duwayne M. Anderson,et al.  Mass spectrometric analysis of organic compounds, water and volatile constituents in the atmosphere and surface of Mars: The Viking Mars Lander , 1972 .

[134]  Frances Westall,et al.  Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa , 2011 .

[135]  Sara Seager,et al.  An astrophysical view of Earth-based metabolic biosignature gases. , 2012, Astrobiology.

[136]  Paloma Serrano,et al.  Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes , 2017, Scientific Reports.

[137]  Jon M. Friedrich,et al.  Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites , 2002 .

[138]  Kenneth S. Edgett,et al.  Deconvolution of distinct lithology chemistry through oversampling with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer , 2016 .

[139]  C. McKay,et al.  Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. , 1999, Science.

[140]  Ralph L. McNutt,et al.  Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer , 2009 .

[141]  Paul Lemieux,et al.  Infectivity studies of both ash and air emissions from simulated incineration of scrapie-contaminated tissues. , 2004, Environmental science & technology.

[142]  Thomas Maskow,et al.  Calorimetry and biothermodynamics for biotechnology, medicine and environmental sciences: Current status and advances , 2013 .

[143]  Vance I. Oyama,et al.  The Gas Exchange Experiment for life detection - The Viking Mars Lander. , 1972 .

[144]  D. Armbruster,et al.  Limit of blank, limit of detection and limit of quantitation. , 2008, The Clinical biochemist. Reviews.

[145]  Dennis C. Reuter,et al.  OSIRIS-REx Encounters Earth: Signatures of a Habitable World , 2018 .

[146]  J. W. Beck,et al.  Isotopic evidence for extraterrestrial organic material in the Martian meteorite, Nakhla , 2000 .

[147]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[148]  Christopher P. McKay,et al.  The nitrate/(per)chlorate relationship on Mars , 2017 .

[149]  Martin Homann,et al.  Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile , 2020, Astrobiology.

[150]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[151]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[152]  David C. Catling,et al.  Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life , 2018, Science Advances.

[153]  D. Karl,et al.  Microorganisms in the accreted ice of Lake Vostok, Antarctica. , 1999, Science.

[154]  G. Horneck,et al.  AstRoMap European Astrobiology Roadmap , 2016, Astrobiology.

[155]  Frances Westall,et al.  Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. , 2011, Astrobiology.

[156]  D P Glavin,et al.  A search for endogenous amino acids in martian meteorite ALH84001. , 1998, Science.

[157]  Irina N Mitskevich,et al.  Microflora of the deep glacier horizons of Central Antarctica , 1998 .

[158]  Joshua R. Smith,et al.  Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001 , 1998, Journal of microscopy.

[159]  W. Wade,et al.  Strategies for culture of 'unculturable' bacteria. , 2010, FEMS microbiology letters.

[160]  Roger E. Summons,et al.  Molecular Biosignatures , 2008 .

[161]  Nikolai Lebedev,et al.  Evolution of Chlorophyll Biosynthesis—The Challenge to Survive Photooxidation , 1996, Cell.

[162]  E. Stewart Growing Unculturable Bacteria , 2012, Journal of bacteriology.

[163]  H P Klein,et al.  The Mars oxidant experiment (MOx) for Mars '96. , 1998, Planetary and space science.

[164]  A. Anbar,et al.  A Contemporary Microbially Maintained Subglacial Ferrous "Ocean" , 2009, Science.

[165]  Sue Wirick,et al.  Biogenic origin for Earth's oldest putative microfossils , 2009 .

[166]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[167]  A. Anbar,et al.  A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus , 2011, Science.

[168]  K. Stetter,et al.  Carbon isotopic composition of individual Precambrian microfossils. , 2000, Geology.

[169]  Drake Deming,et al.  What we could learn from observations of terrestrial exoplanets , 2016 .

[170]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[171]  Andrew Steele,et al.  Organic Carbon Inventory of the Tissint Meteorite , 2013 .

[172]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[173]  R. Lenski,et al.  Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation , 2003, Nature Reviews Genetics.

[174]  George L. Hobby,et al.  The carbon-assimilation experiment: The Viking Mars Lander , 1972 .

[175]  Ricardo Arevalo,et al.  Mass spectrometry and planetary exploration: A brief review and future projection , 2019, Journal of mass spectrometry : JMS.

[176]  J. E. HUMBLE,et al.  The meaning of life , 2013, Nature.

[177]  A. D. Aubrey,et al.  An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems , 2009, Origins of Life and Evolution of Biospheres.

[178]  S A Aksyonov,et al.  Impact desolvation of electrosprayed microdroplets--a new ionization method for mass spectrometry of large biomolecules. , 2001, Rapid communications in mass spectrometry : RCM.

[179]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[180]  N. Noffke Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. , 2015, Astrobiology.

[181]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[182]  F. Postberg,et al.  Enceladus Life Finder: The search for life in a habitable Moon , 2015, 2016 IEEE Aerospace Conference.

[183]  J L Bada,et al.  Amino acid racemization in amber-entombed insects: implications for DNA preservation. , 1994, Geochimica et cosmochimica acta.

[184]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[185]  P Coll,et al.  Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars , 2015, Journal of geophysical research. Planets.

[186]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[187]  B. Halliwell,et al.  Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. , 1996, The Biochemical journal.

[188]  T. Beveridge,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and α-FeOOH , 2001, Science.

[189]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[190]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[191]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[192]  David C. Catling,et al.  Is there methane on Mars , 2010 .

[193]  Henry J Sun,et al.  Racemization in Reverse: Evidence that D-Amino Acid Toxicity on Earth Is Controlled by Bacteria with Racemases , 2014, PloS one.

[194]  A C Allwood,et al.  Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover. , 2014, Astrobiology.

[195]  Anita Weismantel Mikasa,et al.  Play it again , 1995 .

[196]  Iris Fry The Role of Natural Selection in the Origin of Life , 2011, Origins of Life and Evolution of Biospheres.

[197]  M. Waldor,et al.  D-Amino Acids Govern Stationary Phase Cell Wall Remodeling in Bacteria , 2009, Science.

[198]  Per Nornberg,et al.  A sink for methane on Mars? The answer is blowing in the wind , 2014 .

[199]  J. W. NEWTON,et al.  Metabolism of D-Alanine in Rhodospirillum rubrum and its Bacilliform Mutants , 1970, Nature.

[200]  Aivo Lepland,et al.  Questioning the evidence for Earth's earliest life—Akilia revisited , 2005 .

[201]  Michael C Storrie-Lombardi,et al.  Amino acid distribution in meteorites: diagenesis, extraction methods, and standard metrics in the search for extraterrestrial biosignatures. , 2006, Astrobiology.

[202]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[203]  Alexander S Bradley,et al.  The sluggish speed of making abiotic methane , 2016, Proceedings of the National Academy of Sciences.

[204]  Christopher P. McKay,et al.  Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” , 2011 .

[205]  Hsin-Hsin Peng,et al.  Biomimetic Properties of Minerals and the Search for Life in the Martian Meteorite ALH84001 , 2012 .