Numerical solution of scalar conservation laws with random flux functions

We consider scalar hyperbolic conservation laws in several space dimensions, with a class of ran- dom (and parametric) flux functions. We propose a Karhunen-Loeve expansion on the state space of the random flux. For random flux functions which are continuously differentiable with respect to the state variable u, we prove the existence of a unique random entropy solution. Using a Karhunen-Loeve spectral decomposition of the random flux into principal components with respect to the state variables, we introduce a family of parametric, deterministic entropy solutions on high- dimensional parameter spaces. We prove bounds on the sensitivity of the parametric and of the random entropy solutions on the Karhunen-Loeve parameters. We also outline the convergence analysis for two classes of discretization schemes, the multilevel Monte Carlo finite volume method (MLMCFVM), developed in (S. Mishra and C. Schwab, Math. Comp., 81 (2012), pp. 1979-2018), (S. Mishra, C. Schwab, and J. ˇ Sukys, J. Comput. Phys., 231 (2012), pp. 3365-3388), and (S. Mishra, C. Schwab, and J. ˇ Multi-level Monte Carlo finite volume methods for uncertainty quantifi- cation in nonlinear systems of balance laws, in Uncertainty Quantification in Computational Fluid Dynamics, Lecture Notes in Comput. Sci. Eng. 92, Springer, Heidelberg, 2013, pp. 225-294), and the stochastic collocation finite volume method (SCFVM) of (S. Tokareva, Stochastic Finite Volume Methods for Computational Uncertainty Quantification in Hyperbolic Conservation Laws, Ph.D. dis- sertation, ETH Diss. Nr. 21498, ETH Zurich, Zurich, Switzerland).

[1]  Christoph Schwab,et al.  Multilevel Monte Carlo front-tracking for random scalar conservation laws , 2016 .

[2]  Bernt Øksendal,et al.  The Burgers equation with a noisy force and the stochastic heat equation , 1994 .

[3]  Timothy J. Barth,et al.  On the propagation of statistical model parameter uncertainty in CFD calculations , 2012 .

[4]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[5]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[6]  Bernardo Cockburn,et al.  Convergence of the finite volume method for multidimensional conservation laws , 1995 .

[7]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[8]  Jack Xin,et al.  Front Speed in the Burgers Equation with a Random Flux , 1997 .

[9]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[10]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[11]  Svetlana Tokareva,et al.  Stochastic finite volume methods for computational uncertainty quantification in hyperbolic conservation laws , 2013 .

[12]  Jack Xin,et al.  White noise perturbation of the viscous shock fronts of the Burgers equation , 1996 .

[13]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[14]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[15]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[16]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[17]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[18]  G E Karniadakis,et al.  The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[20]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[21]  Svetlana Tokareva,et al.  High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2013 .

[22]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[23]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[24]  Jan S. Hesthaven,et al.  Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .

[25]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[26]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[27]  H. Holden,et al.  Conservation laws with a random source , 1997 .

[28]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[29]  Jonas Sukys,et al.  Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[30]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[31]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[32]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[33]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[34]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.