Numerical solution of scalar conservation laws with random flux functions
暂无分享,去创建一个
[1] Christoph Schwab,et al. Multilevel Monte Carlo front-tracking for random scalar conservation laws , 2016 .
[2] Bernt Øksendal,et al. The Burgers equation with a noisy force and the stochastic heat equation , 1994 .
[3] Timothy J. Barth,et al. On the propagation of statistical model parameter uncertainty in CFD calculations , 2012 .
[4] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[5] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[6] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[7] P. Lax. Hyperbolic systems of conservation laws , 2006 .
[8] Jack Xin,et al. Front Speed in the Burgers Equation with a Random Flux , 1997 .
[9] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[10] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[11] Svetlana Tokareva,et al. Stochastic finite volume methods for computational uncertainty quantification in hyperbolic conservation laws , 2013 .
[12] Jack Xin,et al. White noise perturbation of the viscous shock fronts of the Burgers equation , 1996 .
[13] G. Karniadakis,et al. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .
[14] H. Holden,et al. Front Tracking for Hyperbolic Conservation Laws , 2002 .
[15] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[16] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[17] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[18] G E Karniadakis,et al. The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[19] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[20] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[21] Svetlana Tokareva,et al. High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data , 2013 .
[22] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[23] Michael B. Giles,et al. Multilevel Monte Carlo methods , 2013, Acta Numerica.
[24] Jan S. Hesthaven,et al. Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .
[25] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[26] E Weinan,et al. Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.
[27] H. Holden,et al. Conservation laws with a random source , 1997 .
[28] Alexandre Ern,et al. Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..
[29] Jonas Sukys,et al. Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.
[30] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[31] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[32] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[33] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[34] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.