Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models.

Noise estimation is a challenging task in magnetic resonance imaging (MRI), with applications in quality assessment, filtering or diffusion tensor estimation. Main noise estimators based on the Rician model are revisited and classified in this article, and new useful methods are proposed. Additionally, all the surveyed estimators are extended to the noncentral chi model, which applies to multiple-coil MRI and some important parallel imaging algorithms for accelerated acquisitions. The proposed new noise estimation procedures, based on the distribution of local moments, show better performance in terms of smaller variance and unbiased estimation over a wide range of experiments, with the additional advantage of not needing to explicitly segment the background of the image.

[1]  S. Schoenberg,et al.  Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. , 2008, Magnetic resonance imaging.

[2]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[3]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[4]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[5]  J. Sijbers,et al.  Automatic estimation of the noise variance from the histogram of a magnetic resonance image , 2007, Physics in medicine and biology.

[6]  Jerry L. Prince,et al.  Diffusion Tensor Estimation by Maximizing Rician Likelihood , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[7]  R. Edelman,et al.  Magnetic resonance imaging (2) , 1993, The New England journal of medicine.

[8]  Per Zetterberg,et al.  Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study. , 2007, Magnetic resonance imaging.

[9]  Jan Sijbers,et al.  Estimation of signal and noise from Rician distributed data , 1998 .

[10]  Jan Sijbers,et al.  Robust estimation of the noise variance from background MR data , 2006, SPIE Medical Imaging.

[11]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[12]  Wenhui Yang,et al.  Adaptive Magnetic Resonance Image Denoising Using Mixture Model and Wavelet Shrinkage , 2003, DICTA.

[13]  Geert M. P. van Kempen,et al.  Background estimation in nonlinear image restoration , 2000 .

[14]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[15]  Carlo Pierpaoli,et al.  An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images , 2005, SPIE Medical Imaging.

[16]  Carl-Fredrik Westin,et al.  Restoration of DWI Data Using a Rician LMMSE Estimator , 2008, IEEE Transactions on Medical Imaging.

[17]  Jae S. Lim,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[18]  N. Ayache,et al.  Clinical DT-MRI Estimation, Smoothing, and Fiber Tracking With Log-Euclidean Metrics , 2007 .

[19]  Nabih N. Abdelmalek,et al.  Maximum likelihood thresholding based on population mixture models , 1992, Pattern Recognit..

[20]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[21]  Dana H. Brooks,et al.  A tour of accelerated parallel MR imaging from a linear systems perspective , 2005 .

[22]  Fionn Murtagh,et al.  Automatic Noise Estimation from the Multiresolution Support , 1998 .

[23]  Marcos Martín-Fernández,et al.  Automatic noise estimation in images using local statistics. Additive and multiplicative cases , 2009, Image Vis. Comput..

[24]  Santiago Aja-Fernández,et al.  Joint LMMSE Estimation of DWI Data for DTI Processing , 2008, MICCAI.

[25]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[26]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[27]  P. Yger,et al.  An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images , 2007 .

[28]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .

[29]  Cheng Guan Koay,et al.  A signal transformational framework for breaking the noise floor and its applications in MRI. , 2009, Journal of magnetic resonance.

[30]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[31]  Carl-Fredrik Westin,et al.  Signal LMMSE Estimation from Multiple Samples in MRI and DT-MRI , 2007, MICCAI.

[32]  Konstantinos Konstantinides,et al.  Noise estimation and filtering using block-based singular value decomposition , 1997, IEEE Trans. Image Process..

[33]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[34]  Giovanna Rizzo,et al.  Noise Correction on Rician Distributed Data for Fibre Orientation Estimators , 2008, IEEE Transactions on Medical Imaging.

[35]  D. M. Drumheller General expressions for Rician density and distribution functions , 1993 .

[36]  Joseph A. O'Sullivan,et al.  ATR performance of a Rician model for SAR images , 2000, SPIE Defense + Commercial Sensing.

[37]  Russell M. Mersereau,et al.  Automatic detection of brain contours in MRI data sets. , 1993, IEEE transactions on medical imaging.

[38]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[39]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[40]  Adelio Salsano,et al.  Noise estimation in digital images using fuzzy processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[41]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[42]  Seungjoon Yang,et al.  Block-based noise estimation using adaptive Gaussian filtering , 2005, 2005 Digest of Technical Papers. International Conference on Consumer Electronics, 2005. ICCE..

[43]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.