On the approximation of spectra of linear operators on Hilbert spaces

Abstract We present several new techniques for approximating spectra of linear operators (not necessarily bounded) on an infinite-dimensional, separable Hilbert space. Our approach is to take well-known techniques from finite-dimensional matrix analysis and show how they can be generalized to an infinite-dimensional setting to provide approximations of spectra of elements in a large class of operators. We conclude by proposing a solution to the general problem of approximating the spectrum of an arbitrary bounded operator by introducing the n -pseudospectrum and argue how that can be used as an approximation to the spectrum.

[1]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[2]  E. B. Davies A hierarchical method for obtaining eigenvalue enclosures , 2000, Math. Comput..

[3]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[4]  FINITE EIGENFUNCTION APPROXIMATIONS FOR CONTINUOUS SPECTRUM OPERATORS , 1993 .

[5]  William Arveson C*-Algebras and Numerical Linear Algebra , 1992 .

[6]  E B Davies,et al.  Spectral Pollution , 2002 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  Eugene Shargorodsky,et al.  Geometry of higher order relative spectra and projection methods , 2000 .

[9]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[10]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[11]  Richard P. Messmer,et al.  Upper and lower bounds to eigenvalues , 1969 .

[12]  Srinivasa Varadhan,et al.  FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .

[13]  W. Arveson Discretized CCR algebras , 1992, funct-an/9211015.

[14]  E. Bedos On Følner nets, Szegö's theorem and other eigenvalue distribution theorems , 1996 .

[15]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[16]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[17]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[18]  E. Davies A Defence of Mathematical Pluralism , 2005 .

[19]  Improper filtrations for C*-algebras: spectra of unilateral tridiagonal operators , 1992, funct-an/9211003.

[20]  R. Riddell SPECTRAL CONCENTRATION FOR SELF-ADJOINT OPERATORS , 1967 .

[21]  A. Böttcher,et al.  Approximation of approximation numbers by truncation , 2001 .

[22]  Szegö Type Limit Theorems , 1996 .

[23]  A. Pokrzywa,et al.  Method of orthogonal projections and approximation of the spectrum of a bounded operator II , 1979 .

[24]  Nathanial P. Brown Quasi-diagonality and the finite section method , 2007, Math. Comput..

[25]  Paul R. Halmos,et al.  Ten problems in Hilbert space , 1970 .

[26]  Carlos Tomei,et al.  Toda flows with infinitely many variables , 1985 .

[27]  THE ROLE OF C ∗ -ALGEBRAS IN INFINITE DIMENSIONAL NUMERICAL LINEAR ALGEBRA , 1993, funct-an/9306003.

[28]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[29]  I. D. Berg,et al.  An extension of the Weyl-von Neumann theorem to normal operators , 1971 .

[30]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .