On the approximation of spectra of linear operators on Hilbert spaces
暂无分享,去创建一个
[1] G. Szegő. Beiträge zur Theorie der Toeplitzschen Formen , 1920 .
[2] E. B. Davies. A hierarchical method for obtaining eigenvalue enclosures , 2000, Math. Comput..
[3] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[4] FINITE EIGENFUNCTION APPROXIMATIONS FOR CONTINUOUS SPECTRUM OPERATORS , 1993 .
[5] William Arveson. C*-Algebras and Numerical Linear Algebra , 1992 .
[6] E B Davies,et al. Spectral Pollution , 2002 .
[7] Tosio Kato. Perturbation theory for linear operators , 1966 .
[8] Eugene Shargorodsky,et al. Geometry of higher order relative spectra and projection methods , 2000 .
[9] Nelson,et al. Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.
[10] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[11] Richard P. Messmer,et al. Upper and lower bounds to eigenvalues , 1969 .
[12] Srinivasa Varadhan,et al. FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .
[13] W. Arveson. Discretized CCR algebras , 1992, funct-an/9211015.
[14] E. Bedos. On Følner nets, Szegö's theorem and other eigenvalue distribution theorems , 1996 .
[15] Steffen Roch,et al. C* - Algebras and Numerical Analysis , 2000 .
[16] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[17] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[18] E. Davies. A Defence of Mathematical Pluralism , 2005 .
[19] Improper filtrations for C*-algebras: spectra of unilateral tridiagonal operators , 1992, funct-an/9211003.
[20] R. Riddell. SPECTRAL CONCENTRATION FOR SELF-ADJOINT OPERATORS , 1967 .
[21] A. Böttcher,et al. Approximation of approximation numbers by truncation , 2001 .
[22] Szegö Type Limit Theorems , 1996 .
[23] A. Pokrzywa,et al. Method of orthogonal projections and approximation of the spectrum of a bounded operator II , 1979 .
[24] Nathanial P. Brown. Quasi-diagonality and the finite section method , 2007, Math. Comput..
[25] Paul R. Halmos,et al. Ten problems in Hilbert space , 1970 .
[26] Carlos Tomei,et al. Toda flows with infinitely many variables , 1985 .
[27] THE ROLE OF C ∗ -ALGEBRAS IN INFINITE DIMENSIONAL NUMERICAL LINEAR ALGEBRA , 1993, funct-an/9306003.
[28] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[29] I. D. Berg,et al. An extension of the Weyl-von Neumann theorem to normal operators , 1971 .
[30] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .