On graph partitioning, spectral analysis, and digital mesh processing

Partitioning is a fundamental operation on graphs. In this paper we briefly review the basic concepts of graph partitioning and its relationship to digital mesh processing. We also elaborate on the connection between graph partitioning and spectral graph theory. Applications in computer graphics are described.

[1]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[2]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[3]  N. Biggs Algebraic Graph Theory , 1974 .

[4]  Reuven Bar-Yehuda,et al.  Time/space tradeoffs for polygon mesh rendering , 1996, TOGS.

[5]  Hugues Hoppe,et al.  Optimization of mesh locality for transparent vertex caching , 1999, SIGGRAPH.

[6]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  H. Sagan Space-filling curves , 1994 .

[9]  Craig Gotsman,et al.  Efficient compression and rendering of multi-resolution meshes , 2002, IEEE Visualization, 2002. VIS 2002..

[10]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[11]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[12]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[13]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[14]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[15]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[16]  Martin Isenburg,et al.  Connectivity shapes , 2001, Proceedings Visualization, 2001. VIS '01..

[17]  L. Lovász,et al.  On the null space of a Colin de Verdière matrix , 1999 .

[18]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[19]  Charles J. Alpert,et al.  Spectral Partitioning: The More Eigenvectors, The Better , 1995, 32nd Design Automation Conference.

[20]  R. Yarlagadda,et al.  Hadamard matrix analysis and synthesis: with applications to communications and signal/image processing , 1996 .

[21]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[22]  Craig Gotsman,et al.  Universal Rendering Sequences for Transparent Vertex Caching of Progressive Meshes , 2002, Comput. Graph. Forum.

[23]  Steven Skiena,et al.  Efficiently computing and updating triangle strips for real-time rendering , 2000, Comput. Aided Des..