Smallest components in decomposable structures: Exp-log class

The smallest size of components in random decomposable combinatorial structures is studied in a general framework. Our results include limit distribution and local theorems for the size of therth smallest component of an object of sizen. Expectation, variance and higher moments of therth smallest component are also derived. The results apply to several combinatorial structures in the exp-log class for both labelled and unlabelled objects. We exemplify with several combinatorial structures like permutations and polynomials over finite fields.

[1]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[2]  Andrew D. Barbour,et al.  Random Combinatorial Structures and Prime Factorizations , 1997 .

[3]  John Knopfmacher,et al.  Analytic arithmetic of algebraic function fields , 1979 .

[4]  Donald E. Knuth,et al.  Analysis of a Simple Factorization Algorithm , 1976, Theor. Comput. Sci..

[5]  de Ng Dick Bruijn On the number of uncancelled elements in the sieve of Eratosthenes , 1950 .

[6]  G. Sankaranarayanan,et al.  Ordered cycle lengths in a random permutation. , 1971 .

[7]  Philippe Flajolet,et al.  Random Mapping Statistics , 1990, EUROCRYPT.

[8]  Mireille Car Théorèmes de densité dans $F_q[X]$ , 1987 .

[9]  V. E. Stepanov Limit Distributions of Certain Characteristics of Random Mappings , 1969 .

[10]  Simon Tavaré,et al.  Total Variation Asymptotics for Poisson Process Approximations of Logarithmic Combinatorial Assemblies , 1995 .

[11]  E. Capelas de Oliveira On generating functions , 1992 .

[12]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[13]  Philippe Flajolet,et al.  General combinatorial schemas: Gaussian limit distributions and exponential tails , 1993, Discret. Math..

[14]  G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory , 1995 .

[15]  Philippe Flajolet,et al.  Gaussian limiting distributions for the number of components in combinatorial structures , 1990, J. Comb. Theory, Ser. A.

[16]  Xavier Gourdon,et al.  Largest component in random combinatorial structures , 1998, Discret. Math..

[17]  Daniel Panario,et al.  Analysis of Ben-Or's polynomial irreducibility test , 1998, Random Struct. Algorithms.

[18]  K. Dickman On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .

[19]  Ioannis Andreadis,et al.  Quelques consquences de la transversalit en dimension infinie , 2001 .

[20]  Dudley Stark,et al.  Explicit Limits of Total Variation Distance in Approximations of Random Logarithmic Assemblies by Related Poisson Processes , 1997, Combinatorics, Probability and Computing.

[21]  de Ng Dick Bruijn On the number of positive integers $\leq x$ and free of prime factors $>y$ , 1951 .