Convergence Results for Smooth Regularizations of Hybrid Nonlinear Optimal Control Problems

We consider a class of hybrid nonlinear optimal control problems having a discontinuous dynamics ruled by a partition of the state space. For this class of problems, some hybrid versions of the usual Pontryagin Maximum Principle are known. We introduce general regularization procedures, parameterized by a small parameter, smoothing the previous hybrid problems to standard smooth optimal control problems, for which we can apply the usual Pontryagin Maximum Principle. We investigate the question of the convergence of the resulting extremals as the regularization parameter tends to zero. Under some general assumptions, we prove that smoothing regularization procedures converge, in the sense that the solution of the regularized problem (as well as its extremal lift) converges to the solution of the initial hybrid problem. To illustrate our convergence result, we apply our approach to the minimal time low-thrust coplanar orbit transfer with eclipse constraint.

[1]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[2]  Alberto Bressan,et al.  Optimal control problems on stratified domains , 2007, Networks Heterog. Media.

[3]  Kazimierz Malanowski Differentiability with respect to parameters of solutions to convex programming problems , 1985, Math. Program..

[4]  Emmanuel Trélat,et al.  Morse-Sard type results in sub-Riemannian geometry , 2005 .

[5]  Emmanuel Trélat,et al.  Geometric optimal control of elliptic Keplerian orbits , 2005 .

[6]  Helmut Maurer,et al.  Sufficient Conditions and Sensitivity Analysis for Optimal Bang-Bang Control Problems with State Constraints , 2007, System Modelling and Optimization.

[7]  W. Hager Lipschitz Continuity for Constrained Processes , 1979 .

[8]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[9]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[10]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[11]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[12]  Frank H. Clarke,et al.  The relationship between the maximum principle and dynamic programming , 1987 .

[13]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[14]  Cristiana J. Silva,et al.  Smooth Regularization of Bang-Bang Optimal Control Problems , 2010, IEEE Transactions on Automatic Control.

[15]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[16]  A. V. Dmitruk,et al.  The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle , 2008, Syst. Control. Lett..

[17]  Jean-Baptiste Caillau,et al.  Coplanar control of a satellite around the Earth , 2001 .

[18]  Pierre Martinon,et al.  Using switching detection and variational equations for the shooting method , 2007 .

[19]  H. Maurer,et al.  Sensitivity analysis of optimal control problems with bang-bang controls , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  Emmanuel Trélat,et al.  Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.

[21]  G. Stefani Regularity properties of the minimum-time map , 1991 .

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[23]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[24]  Mazen Alamir A benchmark for optimal control problem solvers for hybrid nonlinear systems , 2006, Autom..

[25]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[26]  Mauro Garavello,et al.  Hybrid optimal control: Case study of a car with gears , 2003 .

[27]  S. Sager Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control , 2009 .

[28]  Frédéric Kratz,et al.  An Optimal Control Approach for Hybrid Systems , 2003, Eur. J. Control.

[29]  H. Sussmann A nonsmooth hybrid maximum principle , 1999 .

[30]  A. Dontchev Perturbations, Approximations, and Sensitivity Analysis of Optimal Control Systems , 1983 .

[31]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[32]  Richard Epenoy,et al.  OPTIMAL CONTROL FOR ENGINES WITH ELECTRO-IONIC PROPULSION UNDER CONSTRAINT OF ECLIPSE , 2001 .

[33]  Emmanuel Tr'elat,et al.  On the stabilization problem for nonholonomic distributions , 2006, math/0610363.

[34]  Thomas Haberkorn,et al.  Low thrust minimum-fuel orbital transfer: a homotopic approach , 2004 .

[35]  Augusto Visintin,et al.  Strong convergence results related to strict convexity , 1984 .

[36]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[37]  Bernard Bonnard,et al.  Mécanique céleste et contrôle des véhicules spatiaux , 2006 .

[38]  J. Aubin Set-valued analysis , 1990 .

[39]  B. Piccoli,et al.  Hybrid Necessary Principle , 2005, CDC/ECC.

[40]  Thomas Haberkorn,et al.  Homotopy method for minimum consumption orbit transfer problem , 2006 .

[41]  Hans Josef Pesch,et al.  Solution differentiability for parametric nonlinear control problems with control-state constraints , 1995 .

[42]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[43]  Xuping Xu,et al.  Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions , 2002 .