String Diagram Rewrite Theory I: Rewriting with Frobenius Structure

String diagrams are a powerful and intuitive graphical syntax, originated in the study of symmetric monoidal categories. In the last few years, they have found application in the modelling of various computational structures, in fields as diverse as Computer Science, Physics, Control Theory, Linguistics, and Biology. In many such proposals, the transformations of the described systems are modelled as rewrite rules of diagrams. These developments demand a mathematical foundation for string diagram rewriting: whereas rewrite theory for terms is well-understood, the two-dimensional nature of string diagrams poses additional challenges. This work systematises and expands a series of recent conference papers laying down such foundation. As first step, we focus on the case of rewrite systems for string diagrammatic theories which feature a Frobenius algebra. This situation ubiquitously appear in various approaches: for instance, in the algebraic semantics of linear dynamical systems, Frobenius structures model the wiring of circuits; in categorical quantum mechanics, they model interacting quantum observables. Our work introduces a combinatorial interpretation of string diagram rewriting modulo Frobenius structures, in terms of double-pushout hypergraph rewriting. Furthermore, we prove this interpretation to be sound and complete. In the last part, we also see that the approach can be generalised to model rewriting modulo multiple Frobenius structures. As a proof of concept, we show how to derive from these results a termination strategy for Interacting Bialgebras, an important rewrite theory in the study of quantum circuits and signal flow graphs.

[1]  Nicoletta Sabadini,et al.  GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS , 2005 .

[2]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Samuel Mimram,et al.  Towards 3-Dimensional Rewriting Theory , 2014, Log. Methods Comput. Sci..

[4]  Barbara König,et al.  Construction of Pushout Complements in the Category of Hypergraphs , 2011, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[5]  Vladimiro Sassone,et al.  Reactive systems over cospans , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Filippo Bonchi,et al.  Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[7]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[8]  Aleks Kissinger,et al.  Open Graphs and Computational Reasoning , 2010, DCM.

[9]  Detlef Plump Checking Graph-Transformation Systems for Confluence , 2010, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[10]  Filippo Bonchi,et al.  Refinement for Signal Flow Graphs , 2017, CONCUR.

[11]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[12]  Aleks Kissinger,et al.  Quantomatic: A proof assistant for diagrammatic reasoning , 2015, CADE.

[13]  Laura Scull,et al.  Amalgamations of Categories , 2009, Canadian Mathematical Bulletin.

[14]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[15]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[16]  Pawel Sobocinski,et al.  Adhesive and quasiadhesive categories , 2005, RAIRO Theor. Informatics Appl..

[17]  Filippo Bonchi Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.

[18]  Detlef Plump,et al.  Confluence of Graph Transformation Revisited , 2005, Processes, Terms and Cycles.

[19]  Aleks Kissinger,et al.  Open-graphs and monoidal theories† , 2010, Mathematical Structures in Computer Science.

[20]  J. Benabou Introduction to bicategories , 1967 .

[21]  Roberto Bruni,et al.  Some algebraic laws for spans , 2001, Electron. Notes Theor. Comput. Sci..

[22]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[23]  Hartmut Ehrig,et al.  Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting , 2004, FoSSaCS.

[24]  Quanlong Wang,et al.  A universal completion of the ZX-calculus , 2017, ArXiv.

[25]  John C. Baez,et al.  Props in Network Theory , 2017, 1707.08321.

[26]  N. Sabadini,et al.  Cospans and spans of graphs: a categorical algebra for the sequential and parallel composition of discrete systems , 2009, 0909.4136.

[27]  Peter Selinger,et al.  Autonomous categories in which A ∼ = A ∗ , 2014 .

[28]  Fabio Gadducci,et al.  An inductive view of graph transformation , 1997, WADT.

[29]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[30]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[31]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[32]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[33]  Fabio Gadducci,et al.  Rewriting with Frobenius , 2018, LICS.

[34]  Fabio Gadducci,et al.  Confluence of Graph Rewriting with Interfaces , 2017, ESOP.

[35]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[36]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[37]  Filippo Bonchi,et al.  The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..

[38]  S. Maclane,et al.  Categorical Algebra , 2007 .

[39]  Fabio Gadducci,et al.  Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[40]  Fabio Gadducci,et al.  Synthesising CCS bisimulation using graph rewriting , 2009, Inf. Comput..