Classification Of Gradient Change Features Using MLP For Handwritten Character Recognition

A novel, generic scheme for off-line handwritten English alphabets character images is proposed. The advantage of the technique is that it can be applied in a generic manner to different applications and is expected to perform better in uncertain and noisy environments. The recognition scheme is using a multilayer perceptron(MLP) neural networks. The system was trained and tested on a database of 300 samples of handwritten characters. For improved generalization and to avoid overtraining, the whole available dataset has been divided into two subsets: training set and test set. We achieved 99.10% and 94.15% correct recognition rates on training and test sets respectively. The purposed scheme is robust with respect to various writing styles and size as well as presence of considerable noise.