Transformation optics for antennas: why limit the bandwidth with metamaterials?

In the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation. Here we circumvent this problem with the proposal of a full dielectric implementation of a transformed planar hyperbolic lens which retains the same focusing properties of an original curved lens. The redesigned lens demonstrates operation with high directivity and low side lobe levels for an ultra-wide band of frequencies, spanning over three octaves. The methodology proposed in this paper can be applied to revolutionise the design of many electromagnetic devices overcoming bandwidth limitations.

[1]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[2]  D. Smith,et al.  Optical lens compression via transformation optics. , 2009, Optics express.

[3]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[4]  Yu Luo,et al.  Homogeneous optical cloak constructed with uniform layered structures. , 2011, Optics express.

[5]  Y. Hao,et al.  Broadband extraordinary transmission in a single sub-wavelength aperture. , 2010, Optics express.

[6]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[7]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[8]  D. Werner,et al.  Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. , 2009, Optics express.

[9]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[10]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[11]  D. Werner,et al.  Transformation optical designs for wave collimators, flat lenses and right-angle bends , 2008 .

[12]  Y. Hao,et al.  Isotropic and nondispersive planar fed Luneburg lens from Hamiltonian transformation optics. , 2012, Optics letters.

[13]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[14]  Oiwi Parker Jones,et al.  A Computational Approach , 2008 .

[15]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[16]  J. Huangfu,et al.  Planar focusing antenna design by using coordinate transformation technology , 2007 .

[17]  Hristo D. Hristov,et al.  Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas , 2000 .

[18]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[19]  Kai Chang,et al.  Handbook of microwave and optical components , 1989 .

[20]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[21]  D. Smith,et al.  Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. , 2010, Physical review letters.

[22]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[23]  Robert W. Bruce,et al.  Theory and design , 2012 .

[24]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature Materials.

[25]  A. Petosa,et al.  Investigation on arrays of perforated dielectric fresnel lenses , 2006 .

[26]  D. Werner,et al.  Polarization splitter and polarization rotator designs based on transformation optics. , 2008, Optics express.

[27]  Per-Simon Kildal A small dipole-fed resonant reflector antenna with high efficiency, low cross polarization, and low sidelobes , 1985 .

[28]  K. Rajab,et al.  Experimental demonstration of broadband transmission through subwavelength aperture , 2010 .

[29]  Andrea Neto,et al.  UWB, Non Dispersive Radiation From the Planarly Fed Leaky Lens Antenna— Part 1: Theory and Design , 2010, IEEE Transactions on Antennas and Propagation.

[30]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[31]  Laurent Le Coq,et al.  Focal Array Fed Dielectric Lenses: An Attractive Solution for Beam Reconfiguration at Millimeter Waves , 2011, IEEE Transactions on Antennas and Propagation.

[32]  Tom Tietenberg,et al.  Theory and design , 2001 .

[33]  A. Petosa,et al.  Design and performance of a perforated dielectric fresnel lens , 2003 .

[34]  Y. Hao,et al.  A broadband zone plate lens from transformation optics. , 2011, Optics express.

[35]  Yijun Feng,et al.  Broad band invisibility cloak made of normal dielectric multilayer , 2011, 1109.6404.

[36]  Randy L. Haupt,et al.  Antenna Arrays: A Computational Approach , 2010 .

[37]  S. Silver Microwave antenna theory and design , 1949 .

[38]  Yang Hao,et al.  Slim Luneburg lens for antenna applications. , 2011, Optics express.