Facile one-pot synthesis of plasmonic gold nanoparticles decorated porphyrin-metal organic framework for photocatalytic hydrogen evolution

[1]  Duc-Trung Nguyen,et al.  Chemically bonded plasmonic triazole-functionalized Au/zeolitic imidazole framework (ZIF-67) for enhanced CO2 photoreduction. , 2022, ChemSusChem.

[2]  V. Fedin,et al.  Zinc(II) and cobalt(II) complexes with unusual coordination of mixed imidazole-1,2,4-triazole ligand in a protonated cationic form , 2022, Polyhedron.

[3]  Xuan Zhang,et al.  Impacts of Metal–Support Interaction on Hydrogen Evolution Reaction of Cobalt-Nitride-Carbide Catalyst , 2022, Frontiers in Chemistry.

[4]  J. Bisquert,et al.  Interpretation of Mott–Schottky plots of photoanodes for water splitting , 2022, Chemical science.

[5]  T. Do,et al.  Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO2 reduction , 2021, Green Chemistry.

[6]  Zhuo Chen,et al.  Solid phase synthesis of metal-free perovskite crystalline materials , 2021, Journal of Solid State Chemistry.

[7]  Yang Bai,et al.  Metal‐Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage , 2021, Advanced Energy Materials.

[8]  Qinghua Zhang,et al.  Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. , 2021, Journal of the American Chemical Society.

[9]  Hai‐Long Jiang,et al.  Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses , 2021, Journal of Materials Chemistry A.

[10]  Shi Xuan Leong,et al.  Plasmonic Nanoparticle-Metal–Organic Framework (NP–MOF) Nanohybrid Platforms for Emerging Plasmonic Applications , 2021 .

[11]  Baosheng Liu,et al.  Synergistic effect of carboxyl and sulfate groups for effective removal of radioactive strontium ion in a Zr-metal-organic framework. , 2021, Water science and technology : a journal of the International Association on Water Pollution Research.

[12]  W. Ahn,et al.  Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis , 2021, Korean Journal of Chemical Engineering.

[13]  Chenxiang Lin,et al.  Porphyrin-Based Metal-Organic Frameworks for Efficient Photocatalytic H2 Production under Visible-Light Irradiation. , 2021, Inorganic chemistry.

[14]  T. Do,et al.  Plasmonic Materials: Opportunities and Challenges on Reticular Chemistry for Photocatalytic Applications , 2021, ChemCatChem.

[15]  Long Jiang,et al.  Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction , 2021, Nature Communications.

[16]  Wei Cheng,et al.  One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties , 2021, Advanced Composites and Hybrid Materials.

[17]  T. Seideman,et al.  Light-Triggered Switching of Quantum Dot Photoluminescence through Excited-State Electron Transfer to Surface-Bound Photochromic Molecules. , 2021, Nano letters.

[18]  Jianping Yang,et al.  Cobalt-Based Metal-Organic Frameworks and Their Derivatives for Hydrogen Evolution Reaction , 2020, Frontiers in Chemistry.

[19]  Y. Ok,et al.  Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals , 2020, Renewable and Sustainable Energy Reviews.

[20]  J. Jin Highly stable and efficient visible-light-driven carbon dioxide reduction by zirconium–metalloporphyrin PCN-222 via dual catalytic routes , 2020, Reaction Kinetics, Mechanisms and Catalysis.

[21]  T. Do,et al.  Plasmonic Au Nanoparticles Incorporated in the Zeolitic Imidazolate Framework (ZIF-67) for the Efficient Sunlight-Driven Photoreduction of CO2 , 2020 .

[22]  Jingquan Liu,et al.  Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions , 2020 .

[23]  Xijiang Han,et al.  Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis , 2020, Advanced materials.

[24]  Stephen M. Martin,et al.  PCN-222 Metal-Organic Framework Nanoparticles with Tunable Pore Size for Nanocomposite Reverse Osmosis Membranes. , 2020, ACS applied materials & interfaces.

[25]  Jun Cheng,et al.  Theoretical study of kinetics of proton coupled electron transfer in photocatalysis. , 2020, The Journal of chemical physics.

[26]  P. Taba,et al.  Theoretical Analysis Properties of Gold Nanoparticles Resulted by Bioreduction Process , 2020, Journal of Physics: Conference Series.

[27]  Longfei Xu,et al.  Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform , 2020, Minerals.

[28]  H. Fan,et al.  Porphyrin-based photocatalysts for hydrogen production , 2020, MRS Bulletin.

[29]  Tingting Liu,et al.  Electrostatic Interaction-induced Formation of Enzyme-on-MOF as Chemo-Biocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance. , 2019, ACS applied materials & interfaces.

[30]  Shaohua Shen,et al.  Single Metal Atom Photocatalysis , 2019, Small Methods.

[31]  L. Gu,et al.  Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide , 2019, Nature Communications.

[32]  B. Martín‐Matute,et al.  Fast and Robust Synthesis of Metalated PCN-222 and Their Catalytic Performance in Cycloaddition Reactions with CO2 , 2019, Organometallics.

[33]  Yating Wang,et al.  Decorating Ag/AgCl on UiO-66-NH2: Synergy between Ag plasmons and heterostructure for the realization of efficient visible light photocatalysis , 2019, Chinese Journal of Catalysis.

[34]  Jinhua Ye,et al.  An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light , 2019, Nano Energy.

[35]  Hai‐Long Jiang,et al.  Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications , 2019, Chem.

[36]  Zhiliang Jin,et al.  Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution , 2018, Applied Surface Science.

[37]  Jian Zhang,et al.  van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for Dye‐Sensitized Solar Cells , 2018, Advanced Materials Interfaces.

[38]  Weimin Yang,et al.  Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO2 Support: A DFT Study , 2018, ACS Catalysis.

[39]  Hua Zhou,et al.  From Metal-Organic Frameworks to Single-Atom Fe Implanted N-doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. , 2018, Angewandte Chemie.

[40]  Tao Zhang,et al.  Heterogeneous single-atom catalysis , 2018, Nature Reviews Chemistry.

[41]  B. Qiao,et al.  Single-atom catalysis: Bridging the homo- and heterogeneous catalysis , 2018 .

[42]  Tom Kober,et al.  World Energy Council’s Global Energy Scenarios to 2060 , 2018 .

[43]  L. Gu,et al.  Zirconium-Porphyrin-Based Metal-Organic Framework Hollow Nanotubes for Immobilization of Noble-Metal Single Atoms. , 2018, Angewandte Chemie.

[44]  Xifei Li,et al.  Fabrication of porous Co3O4 with different nanostructures by solid-state thermolysis of metal–organic framework for supercapacitors , 2018, Journal of Materials Science.

[45]  Yi Luo,et al.  Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis , 2018, Advanced materials.

[46]  Mahesh Datt Bhatt,et al.  Nanomaterials for photocatalytic hydrogen production: from theoretical perspectives , 2017 .

[47]  M. E. Díaz-García,et al.  Selective and colorimetric detection of Ba2+ ions in aqueous solutions using 11-mercaptoundecylphosphonic acid functionalized gold nanoparticles , 2017 .

[48]  S. Hamad,et al.  Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions , 2017 .

[49]  F. Odobel,et al.  Sacrificial electron donor reagents for solar fuel production , 2017 .

[50]  J. M. Taboada,et al.  Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions , 2016 .

[51]  Li Shi,et al.  Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. , 2016, Angewandte Chemie.

[52]  Xiaodong Chen,et al.  Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis , 2016 .

[53]  J. Hasanzadeh Optical and Structural Properties of Cu Doped ZnS Nanocrystals: Effect of Temperature and Concentration of Capping Agent , 2016 .

[54]  H. Cui,et al.  A stable and porous iridium(III)-porphyrin metal–organic framework: synthesis, structure and catalysis , 2016 .

[55]  N. K. Shrestha,et al.  Facile interfacial charge transfer across hole doped cobalt-based MOFs/TiO2 nano-hybrids making MOFs light harvesting active layers in solar cells , 2015 .

[56]  Jiaguo Yu,et al.  Graphene-Based Photocatalysts for Solar-Fuel Generation. , 2015, Angewandte Chemie.

[57]  R. Lazzari,et al.  Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic Thiol-Capped Gold Nanoparticles. , 2015, ACS nano.

[58]  T. Do,et al.  Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. , 2015, Nanoscale.

[59]  Qiang Zhang,et al.  A single crystalline porphyrinic titanium metal–organic framework† †Electronic supplementary information (ESI) available. CCDC [1036868]. For ESI and crystallographic data in CIF or other electronic format. See DOI: 10.1039/c5sc00916b Click here for additional data file. Click here for additional da , 2015, Chemical science.

[60]  P. Hamm,et al.  Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution. , 2015, Inorganic chemistry.

[61]  M. Beller,et al.  Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts , 2014, Nature Communications.

[62]  D. Prasetyoko,et al.  Synthesis of UiO-66 Using Solvothermal Method at High Temperature , 2014 .

[63]  Dawei Feng,et al.  Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. , 2013, Journal of the American Chemical Society.

[64]  A. Borgna,et al.  Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production , 2013, Energy & Environmental Science.

[65]  Gang Chen,et al.  Plasmonic materials for energy: From physics to applications , 2013, 1310.6949.

[66]  Can Li,et al.  Roles of cocatalysts in photocatalysis and photoelectrocatalysis. , 2013, Accounts of chemical research.

[67]  Zhangwen Wei,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[68]  M. Khalil,et al.  Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates , 2012 .

[69]  N. Aziz,et al.  Characterization of ZnS Nanoparticles Using MPA as Capping Agents , 2011 .

[70]  L. Allard,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[71]  K. Sakai,et al.  Photo-hydrogen-evolving molecular devices driving visible-light-induced water reduction into molecular hydrogen: structure-activity relationship and reaction mechanism. , 2011, Chemical communications.

[72]  A. Burri,et al.  Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica , 2010 .

[73]  G. Scholes,et al.  On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics , 2010 .

[74]  Nguyen Ngoc Long,et al.  Synthesis and optical properties of colloidal gold nanoparticles , 2009 .

[75]  Jiefang Zhu,et al.  Nanostructured materials for photocatalytic hydrogen production , 2009 .

[76]  A. Hernando,et al.  Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles , 2008, Nanotechnology.

[77]  T. Kinugawa,et al.  Synthesis of biladienone and bilatrienone by coupled oxidation of tetraarylporphyrins. , 2007, The Journal of organic chemistry.

[78]  K. Sing,et al.  Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials , 2004 .

[79]  A. J. Kropf,et al.  An EXAFS study of the coordination chemistry of hydrogen hexachloroplatinate (IV): 2. Speciation of complexes adsorbed onto alumina , 2003 .

[80]  N. Maiti,et al.  J- and H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies , 1998 .

[81]  V. Gopalakrishnan,et al.  Enhancing CO2 photoreduction over ZIF-based reticular materials by morphology control of Au plasmonic nanoparticles , 2022, Sustainable Energy & Fuels.

[82]  Xiaobo Chen,et al.  Emerging Photocatalysts for Hydrogen Evolution , 2020 .

[83]  S. Kahng,et al.  Recent advances in earth-abundant photocatalyst materials for solar H2 production , 2020 .

[84]  G. Gurinovich,et al.  THE SPECTROSCOPY OF THE PORPHYRINS , 1963 .