Wide-angle radar imaging using time-frequency distributions

Low-frequency radar systems provide some attractive advantages in a few niche applications, such as foliage penetration and covert operation. In low-frequency imaging systems, data must be collected over a wide range of angles to obtain cross-range resolution comparable to that obtainable from a competing small-angle high-frequency system. The reflectivity of a target varies with aspect angle; although this variation is usually ignored by traditional radar imaging algorithms, it sometimes cannot be neglected in wide-angle scenarios. To account for aspect dependence of reflectivity, time-frequency transforms have been invoked to generate a series of images corresponding to different look angles; these images may be considered individually or synthesised into a single image. A simple theoretical analysis with a point scatterer illustrates why the angular dependence needs explicit consideration. The potential of time-frequency methods is illustrated via simulations

[1]  L. J. White,et al.  Low-frequency approach to target identification , 1975, Proceedings of the IEEE.

[2]  A. A. Ksienski,et al.  Identification of complex geometrical shapes by means of low-frequency radar returns , 1976 .

[3]  Jack Walker,et al.  Range-Doppler Imaging of Rotating Objects , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[4]  A. Ksienski,et al.  Optimum Frequencies for Aircraft Classification , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[5]  D. Mensa,et al.  Bistatic Synthetic-Aperture Radar Imaging of Rotating Objects , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[6]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[7]  E.K. Walton,et al.  Comparison of Two Target Classification Techniques , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[8]  H. Griffiths,et al.  Television-based bistatic radar , 1986 .

[9]  D. Wehner High Resolution Radar , 1987 .

[10]  Bernard D. Steinberg,et al.  Microwave imaging of aircraft , 1988, Proc. IEEE.

[11]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[12]  Sergio Barbarossa New autofocusing technique for SAR images based on the Wigner-ville distribution , 1990 .

[13]  V. Pascazio,et al.  WASAR: a wide-angle SAR processor , 1992 .

[14]  Sergio Barbarossa,et al.  Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution , 1992 .

[15]  Douglas L. Jones,et al.  A resolution comparison of several time-frequency representations , 1992, IEEE Trans. Signal Process..

[16]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[17]  D. C. Cooper,et al.  Use of the Wigner-Ville distribution to compensate for ionospheric layer movement in high-frequency sky-wave radar systems , 1993 .

[18]  Sergio Barbarossa,et al.  Space-time-frequency processing of synthetic aperture radar signals , 1994 .

[19]  Alan S. Willsky,et al.  Coherent aspect-dependent SAR image formation , 1994, Defense, Security, and Sensing.

[20]  M. J. Gerry,et al.  A GTD-based parametric model for radar scattering , 1995 .

[21]  Mehrdad Soumekh,et al.  Reconnaissance with ultra wideband UHF synthetic aperture radar , 1995, IEEE Signal Process. Mag..

[22]  Mao Yinfang,et al.  SAR/ISAR imaging of multiple moving targets based on combination of WVD and HT , 1996, Proceedings of International Radar Conference.

[23]  Hao Ling,et al.  Three-dimensional scattering center extraction using the shooting and bouncing ray technique , 1996 .

[24]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[25]  Lee C. Potter,et al.  Attributed scattering centers for SAR ATR , 1997, IEEE Trans. Image Process..

[26]  Hao Ling,et al.  Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation , 1997 .

[27]  K.M.M. Prabhu,et al.  Simulation studies of moving-target detection: a new approach with Wigner-Ville distribution , 1997 .

[28]  Pierfrancesco Lombardo Estimation of target motion parameters from dual-channel SAR echoes via time-frequency analysis , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[29]  Hao Ling,et al.  A global scattering center representation of complex targets using the shooting and bouncing ray technique , 1997 .

[30]  Jeffrey H. Shapiro,et al.  Toward a fundamental understanding of multiresolution SAR signatures , 1997, Defense, Security, and Sensing.

[31]  Hao Ling,et al.  3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review , 1998 .

[32]  Emre Ertin,et al.  Polarimetric calibration for wideband synthetic aperture radar imaging , 1998 .

[33]  Shie Qian,et al.  Joint time-frequency transform for radar range-Doppler imaging , 1998 .

[34]  V. C. Chen,et al.  Time-varying spectral analysis for radar imaging of manoeuvring targets , 1998 .

[35]  Fabio Rocca,et al.  Passive geosynchronous SAR system reusing backscattered digital audio broadcasting signals , 1998, IEEE Trans. Geosci. Remote. Sens..

[36]  Lawrence Carin,et al.  Hidden Markov models for multiaspect target classification , 1999, IEEE Trans. Signal Process..

[37]  M. J. Gerry,et al.  A parametric model for synthetic aperture radar measurements , 1999 .

[38]  G.J. Frazer,et al.  Wigner-Ville analysis of HF radar measurement of an accelerating target , 1999, ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359).

[39]  Paul A. Viola,et al.  Nonparametric estimation of aspect dependence for ATR , 1999, Defense, Security, and Sensing.

[40]  Li Xi,et al.  Autofocusing of ISAR images based on entropy minimization , 1999 .

[41]  Andrew J. Terzuoli,et al.  Bistatic scattering characterization of a complex object , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[42]  Lars M. H. Ulander,et al.  Airborne array aperture UWB UHF radar-motivation and system considerations , 1999, Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249).

[43]  P. E. Howland,et al.  Target tracking using television-based bistatic radar , 1999 .

[44]  Yimin Zhang,et al.  Spatial averaging of time-frequency distributions for signal recovery in uniform linear arrays , 2000, IEEE Trans. Signal Process..

[45]  High-resolution beamforming by the Wigner-Ville distribution method , 2000 .

[46]  James H. McClellan,et al.  Analytic models and postprocessing techniques for UWB SAR , 2000, IEEE Trans. Aerosp. Electron. Syst..

[47]  James H. McClellan,et al.  Focusing resonance signatures in ultra-wideband SAR images by allpass filtering , 2000, IEEE Trans. Image Process..

[48]  Dario Tarchi,et al.  A ground-based parasitic SAR experiment , 2000, IEEE Trans. Geosci. Remote. Sens..

[49]  Shu Xiao Topics in CT and SAR Imaging: Fast Back -Projection Algorithms and Optimal Antenna Spacings , 2001 .

[50]  Les E. Atlas,et al.  Optimizing time-frequency kernels for classification , 2001, IEEE Trans. Signal Process..

[51]  David C. Munson,et al.  Multistatic synthetic aperture imaging of aircraft using reflected television signals , 2001, SPIE Defense + Commercial Sensing.

[52]  James H. McClellan,et al.  Multi-aspect target detection for SAR imagery using hidden Markov models , 2001, IEEE Trans. Geosci. Remote. Sens..

[53]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .