Characteristic two-dimensional Fermi surface topology of high-Tc iron-based superconductors

[1]  H. Hosono,et al.  Key role of prioritized diagonal motion of electrons in the iron-based superconductors , 2013 .

[2]  K. Kudo,et al.  Emergence of superconductivity at 45 K by lanthanum and phosphorus co-doping of CaFe2As2 , 2013, Scientific Reports.

[3]  R. Follath,et al.  Electronic band structure and momentum dependence of the superconducting gap in Ca1−xNaxFe2As2 from angle-resolved photoemission spectroscopy , 2012, 1211.4593.

[4]  J.,et al.  Orbital characters of bands in the iron-based superconductor BaFe_{1.85}Co_{0.15}As_{2} , 2013 .

[5]  T. Qian,et al.  Experimental Investigation of the Electronic Structure of Ca0.83La0.17Fe2As2 , 2012, 1210.7288.

[6]  K. Kuroki,et al.  Least momentum space frustration as a condition for a ‘high Tc sweet spot’ in iron-based superconductors , 2012, 1204.1717.

[7]  M. Matsunami,et al.  Three-dimensional electronic structure and interband nesting in the stoichiometric superconductor LiFeAs , 2012 .

[8]  B. Buchner,et al.  Hole-doping in BaFe$_2$As$_2$: The case of Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals , 2012, 1203.0143.

[9]  T. Kondo,et al.  Importance of the Fermi-surface topology to the superconducting state of the electron-doped pnictide Ba(Fe1-xCox) 2As2 , 2011 .

[10]  R. Arita,et al.  Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO , 2011 .

[11]  X. Dai,et al.  Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[12]  X. Dai,et al.  Quasinested Fe orbitals versus Mott-insulating V orbitals in superconducting Sr 2 VFeAsO 3 as seen from angle-resolved photoemission , 2011 .

[13]  Fa Wang,et al.  The Electron-Pairing Mechanism of Iron-Based Superconductors , 2011, Science.

[14]  X. H. Chen,et al.  Nodeless superconducting gap in A(x)Fe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy. , 2010, Nature materials.

[15]  R. Arita,et al.  Two-dimensional and three-dimensional Fermi surfaces of superconducting BaFe2(As(1-x)P(x))2 and their nesting properties revealed by angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[16]  Lin Zhao,et al.  Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a ð Tl , 2011 .

[17]  X. H. Chen,et al.  Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2 , 2009, 0904.4022.

[18]  X. H. Chen,et al.  D ec 2 01 0 Heavily electron-doped electronic structure and isotropic superconducting gap in A x Fe 2 Se 2 ( A = K , Cs ) , 2011 .

[19]  T. Qian,et al.  Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: strong coupling behavior and the universality of interband scattering. , 2010, Physical review letters.

[20]  T. Wolf,et al.  Pressure versus Concentration Tuning of the Superconductivity in Ba(Fe1-xCox)2As2 , 2010, 1010.3863.

[21]  X. H. Chen,et al.  Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[22]  M. Shi,et al.  Observation of a ubiquitous three-dimensional superconducting gap function in optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ , 2010, 1006.3958.

[23]  A. Bostwick,et al.  Unexpected Fermi-surface nesting in the pnictide parent compounds BaFe 2 As 2 and CaFe 2 As 2 revealed by angle-resolved photoemission spectroscopy , 2010 .

[24]  J. Chu,et al.  Enhanced Fermi-surface nesting in superconducting BaFe2(As(1-x)P(x))2 revealed by the de Haas-van Alphen effect. , 2010, Physical review letters.

[25]  Y. Ono,et al.  Two types of s -wave pairing due to magnetic and orbital fluctuations in the two-dimensional 16-band d − p model for iron-based superconductors , 2009, 0912.2392.

[26]  H. Kontani,et al.  Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. , 2009, Physical review letters.

[27]  H. Hosono,et al.  To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report , 2009, 0906.2045.

[28]  R. Arita,et al.  Three-Dimensional Electronic Structure of Superconducting Iron Pnictides Observed by Angle-Resolved Photoemission Spectroscopy , 2009, 0906.1846.

[29]  C. Felser,et al.  Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy , 2009, 0903.0967.

[30]  P. Canfield,et al.  Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure , 2009, 0901.4672.

[31]  J. Schmalian,et al.  PAIRING SYMMETRY AND PAIRING STATE IN FERROPNICTIDES: THEORETICAL OVERVIEW , 2009, 0901.4790.

[32]  Zhu-An Xu,et al.  Fermi surface nesting induced strong pairing in iron-based superconductors , 2008, Proceedings of the National Academy of Sciences.

[33]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[34]  Z. Hussain,et al.  Electronic structure of the iron-based superconductor LaOFeP , 2008, Nature.

[35]  T. Kondo,et al.  Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy. , 2008, Physical review letters.

[36]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[37]  Hiroshi Eisaki,et al.  Superconductivity at 54 K in F-Free NdFeAsO1-y , 2008 .

[38]  C. Krellner,et al.  Magnetic and structural transitions in layered iron arsenide systems: AFe2As2 versus RFeAsO , 2008, 0806.1043.

[39]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[40]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[41]  Young,et al.  Superconductivity at 155 K. , 1987, Physical review letters.

[42]  W. Rossiter,et al.  Progress report , 1954, Research newsletter. College of General Practitioners.