Tsallis non-extensive statistical mechanics of El Niño southern oscillation index

The shape and tails of partial distribution functions (PDF) for a climatological signal, i.e., the El Nino SOI and the turbulent nature of the ocean–atmosphere variability are linked through a model encompassing Tsallis non-extensive statistics and leading to evolution equations of the Langevin and Fokker–Planck type. A model originally proposed to describe the intermittent behavior of turbulent flows describes the behavior of the normalized variability for such a climatological index, for small and large time windows, both for small and large variability. This normalized variability distributions can be sufficiently well fitted with a χ2-distribution. The transition between the small time scale model of non-extensive, intermittent process and the large-scale Gaussian extensive homogeneous fluctuation picture is found to occur at above ca. a 48 months time lag. The intermittency exponent (κ) in the framework of the Kolmogorov log-normal model is found to be related to the scaling exponent of the PDF moments. The value of κ(=0.25) is in agreement with the intermittency exponent recently obtained for other atmospheric data.

[1]  Marcel Ausloos,et al.  Coherent and random sequences in financial fluctuations , 1997 .

[2]  C. R. Neto,et al.  Nonextensive thermostatistics description of intermittency in turbulence and financial markets , 2001 .

[3]  Are EUR and GBP different words for the same currency? , 2001, cond-mat/0105619.

[4]  Marcel Ausloos,et al.  Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking , 1999 .

[5]  M. D. Johnson,et al.  Financial market dynamics , 2001 .

[6]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[7]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[8]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[9]  M Ausloos,et al.  Power-law correlations in the southern-oscillation-index fluctuations characterizing El Niño. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Michael Ghil,et al.  Recent forecast skill for the El Niño/Southern Oscillation , 1998 .

[11]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[12]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  S. Philander El Niño and La Niña predictable climate fluctuations , 1999 .

[14]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[15]  F. Sattin Non-Gaussian probability distribution functions from maximum-entropy-principle considerations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Geoffrey K. Vallis,et al.  Conceptual models of El Niño and the Southern Oscillation , 1988 .

[17]  Marcel Ausloos,et al.  CROSSING OF TWO MOBILE AVERAGES: A METHOD FOR MEASURING THE ROUGHNESS EXPONENT , 1998 .

[18]  Marcel Ausloos,et al.  Break-up of stratus cloud structure predicted from non-Brownian motion liquid water and brightness temperature fluctuations , 2000 .

[19]  M. Ausloos,et al.  SCALING ANALYSIS AND EVOLUTION EQUATION OF THE NORTH ATLANTIC OSCILLATION INDEX FLUCTUATIONS , 2004 .

[20]  Letter to the editor Are the North Atlantic Oscillation and the Southern Oscillation related in any time-scale? , 2000 .

[21]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[22]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[23]  S. Havlin,et al.  Indication of a Universal Persistence Law Governing Atmospheric Variability , 1998 .

[24]  Włodarczyk,et al.  Interpretation of the nonextensivity parameter q in some applications of tsallis statistics and Levy distributions , 2000, Physical review letters.

[25]  C. Beck Scaling exponents in fully developed turbulence from nonextensive statistical mechanics , 2001 .

[26]  H. Tennekes,et al.  Measurements of the Small-Scale Structure of Turbulence at Moderate Reynolds Numbers , 1970 .

[27]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[28]  Michael Ghil,et al.  Adaptive filtering and prediction of the Southern Oscillation index , 1992 .

[29]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[30]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[31]  F. Sattin Derivation of Tsallis statistics from dynamical equations for a granular gas , 2003 .

[32]  Marcel Ausloos,et al.  High frequency intrinsic modes in El Niño/Southern Oscillation Index , 2008, 0805.3464.

[33]  T. Arimitsu,et al.  Analysis of Fully Developed Turbulence by a Generalized Statistics , 2001 .

[34]  Non-Extensive Entropy from Incomplete Knowledge of Shannon Entropy? , 2002, cond-mat/0211157.

[35]  M. Ernst,et al.  Theory of Transport Coefficients for Moderately Dense Gases , 1969 .

[36]  Nobuko Fuchikami,et al.  Dynamical model of financial markets: fluctuating 'temperature' causes intermittent behavior of price changes , 2003 .

[37]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Prasad,et al.  Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. , 1988, Physical review letters.

[39]  L. Reichl A modern course in statistical physics , 1980 .

[40]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[41]  H. Q. Danh,et al.  Temperature dissipation fluctuations in a turbulent boundary layer , 1977 .

[42]  K. Sreenivasan,et al.  An update on the intermittency exponent in turbulence , 1993 .

[43]  The spectra and periodograms of anti-correlated discrete fractional Gaussian noise. , 2003, Physica A.

[44]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[45]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[46]  Christian Beck Dynamical Foundations of Nonextensive Statistical Mechanics , 2001 .

[47]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[48]  P. Jones,et al.  Pre-1866 extensions of the Southern oscillation index using early Indonesian and Tahitian meteorological readings , 1998 .

[49]  Elizabeth C. Kent,et al.  The Southampton Oceanography Centre (SOC) Ocean - Atmosphere, Heat, Momentum and Freshwater Flux Atlas , 1998 .

[50]  H L Swinney,et al.  Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.