Fuzzy description logics with general concept inclusions

[1]  Christopher Tresp,et al.  A Description Logic for Vague Knowledge , 1998, ECAI.

[2]  Yves Chiaramella,et al.  A Model for Multimedia Information Retrieval , 1996 .

[3]  Ju Wang,et al.  Expressive fuzzy description logics over lattices , 2010, Knowl. Based Syst..

[4]  Umberto Straccia,et al.  On the Undecidability of Fuzzy Description Logics with GCIs with Lukasiewicz t-norm , 2011, ArXiv.

[5]  Umberto Straccia,et al.  General Concept Inclusions inFluzzy Description Logics , 2006, ECAI.

[6]  Carsten Lutz,et al.  Complexity of Terminological Reasoning Revisited , 1999, LPAR.

[7]  Rafael Peñaloza,et al.  How Fuzzy Is My Fuzzy Description Logic? , 2012, IJCAR.

[8]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Rafael Peñaloza,et al.  Chair for Automata Theory LTCS – Report Towards a Tableau Algorithm for Fuzzy ALC with Product T-norm , 2011 .

[10]  Umberto Straccia,et al.  Description Logics over Lattices , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[12]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[13]  J. Goguen L-fuzzy sets , 1967 .

[14]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[15]  Harvey M. Salkin,et al.  Foundations of integer programming , 1989 .

[16]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[17]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[18]  Marco Cerami,et al.  On finitely-valued Fuzzy Description Logics , 2014, Int. J. Approx. Reason..

[19]  Marco Cerami Fuzzy Description Logics from a Mathematical Fuzzy Logic point of view , 2012 .

[20]  Marco Cerami,et al.  Finite-Valued Lukasiewicz Modal Logic Is PSPACE-Complete , 2011, IJCAI.

[21]  Giorgos Stoilos,et al.  A Framework for Reasoning with Expressive Continuous Fuzzy Description Logics , 2009, Description Logics.

[22]  Umberto Straccia,et al.  Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ , 2011, Inf. Sci..

[23]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[24]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[25]  Franz Baader,et al.  From Tableaux to Automata for Description Logics , 2003, Fundam. Informaticae.

[26]  Markus Krötzsch Efficient Rule-Based Inferencing for OWL EL , 2011, IJCAI.

[27]  Rafael Peñaloza,et al.  The Complexity of Lattice-Based Fuzzy Description Logics , 2012, Journal on Data Semantics.

[28]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[29]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[30]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[31]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions , 2006, URSW.

[32]  Rafael Peñaloza,et al.  Are fuzzy description logics with general concept inclusion axioms decidable? , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[33]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[34]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[35]  Marco Cerami,et al.  From classical Description Logic to n-graded Fuzzy Description Logic , 2010, International Conference on Fuzzy Systems.

[36]  E. Klement Characterization of fuzzy measures constructed by means of triangular norms , 1982 .

[37]  Rafael Peñaloza,et al.  SI! Automata Can Show PSPACE Results for Description Logics , 2008, LATA.

[38]  Jeff Z. Pan,et al.  Classifying Fuzzy Subsumption in Fuzzy-EL+ , 2008, Description Logics.

[39]  Diego Calvanese,et al.  DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.

[40]  Umberto Straccia,et al.  A Fuzzy Description Logic , 1998, AAAI/IAAI.

[41]  Boris Motik,et al.  Reasoning in description logics using resolution and deductive databases , 2006 .

[42]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[43]  Rafael Peñaloza,et al.  Finite Lattices Do Not Make Reasoning in ALCI Harder , 2011, URSW.

[44]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[45]  Bernhard Hollunder An alternative proof method for possibilistic logic and its application to terminological logics , 1994, Int. J. Approx. Reason..

[46]  Umberto Straccia,et al.  On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm , 2013, Inf. Sci..

[47]  G. Grätzer General Lattice Theory , 1978 .

[48]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[49]  Ian Horrocks,et al.  Keys, Nominals, and Concrete Domains , 2003, IJCAI.

[50]  Umberto Straccia,et al.  A Fuzzy Description Logic with Product T-norm , 2007, 2007 IEEE International Fuzzy Systems Conference.

[51]  Rafael Peñaloza,et al.  Description Logics over Lattices with Multi-Valued Ontologies , 2011, IJCAI.

[52]  Rafael Peñaloza,et al.  The limits of decidability in fuzzy description logics with general concept inclusions , 2015, Artif. Intell..

[53]  Ralf Küsters Non-Standard Inferences in Description Logics , 2001, Lecture Notes in Computer Science.

[54]  Rafael Peñaloza,et al.  Consistency reasoning in lattice-based fuzzy Description Logics , 2014, Int. J. Approx. Reason..

[55]  Boris Motik,et al.  Optimized Reasoning in Description Logics Using Hypertableaux , 2007, CADE.

[56]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[57]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[58]  Louise Schmir Hay,et al.  Axiomatization of the infinite-valued predicate calculus , 1963, Journal of Symbolic Logic.

[59]  Teresa Alsinet,et al.  On the Implementation of a Fuzzy DL Solver over Infinite-Valued Product Logic with SMT Solvers , 2013, SUM.

[60]  Rafael Peñaloza,et al.  Undecidability of Fuzzy Description Logics , 2012, KR.

[61]  Rafael Peñaloza,et al.  Positive Subsumption in Fuzzy EL with General t-Norms , 2013, IJCAI.

[62]  Franz Baader,et al.  Using automata theory for characterizing the semantics of terminological cycles , 1996, Annals of Mathematics and Artificial Intelligence.

[63]  Volker Haarslev,et al.  A formal framework for description logics with uncertainty , 2009, Int. J. Approx. Reason..

[64]  Stephan Tobies,et al.  The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expressive Description Logics , 2011, ArXiv.

[65]  Rafael Peñaloza,et al.  Gödel FL_0 with Greatest Fixed-Point Semantics , 2014, Description Logics.

[66]  Umberto Straccia,et al.  On the Failure of the Finite Model Property in some Fuzzy Description Logics , 2010, Fuzzy Sets Syst..

[67]  Carsten Lutz,et al.  Probabilistic Description Logics for Subjective Uncertainty , 2010, KR.

[68]  Stefan Borgwardt,et al.  Fuzzy DLs over Finite Lattices with Nominals , 2014, Description Logics.

[69]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[70]  Rafael Peñaloza,et al.  Decidable Gödel Description Logics without the Finitely-Valued Model Property , 2014, KR.

[71]  Dirk Pattinson,et al.  Syntactic Labelled Tableaux for Lukasiewicz Fuzzy ALC , 2013, IJCAI.

[72]  Umberto Straccia,et al.  Finite Fuzzy Description Logics and Crisp Representations , 2010, URSW.

[73]  Ian Horrocks,et al.  Optimising Tableaux Decision Procedures For Description Logics , 1997 .

[74]  Marco Cerami,et al.  Decidability of a Description Logic over Infinite-Valued Product Logic , 2010, KR.

[75]  Hector J. Levesque,et al.  The Tractability of Subsumption in Frame-Based Description Languages , 1984, AAAI.

[76]  Riccardo Rosati,et al.  Improving Query Answering over DL-Lite Ontologies , 2010, KR.

[77]  Zoltan Paul Dienes,et al.  On an implication function in many-valued systems of logic , 1949, Journal of Symbolic Logic.

[78]  Bernhard Nebel,et al.  Terminological Reasoning is Inherently Intractable , 1990, Artif. Intell..

[79]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[80]  Umberto Straccia,et al.  Joining Gödel and Zadeh Fuzzy Logics in Fuzzy Description Logics , 2012, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[81]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[82]  I. Horrocks,et al.  A PSPACE-algorithm for deciding ALCNIR+-satisfiability , 1998 .

[83]  Umberto Straccia,et al.  Combining Fuzzy Logic and Semantic Web to Enable Situation-Awareness in Service Recommendation , 2010, DEXA.

[84]  Nguyen Hoang Nga,et al.  THE FUZZY DESCRIPTION LOGIC ALCFLH , 2005 .

[85]  Bernhard Hollunder Consistency checking reduced to satisfiability of concepts in terminological systems , 2005, Annals of Mathematics and Artificial Intelligence.

[86]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[87]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[88]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[89]  Jan Hladik To and fro between tableaus and automata for description logics , 2007 .

[90]  Rafael Peñaloza,et al.  A Tableau Algorithm for Fuzzy Description Logics over Residuated De Morgan Lattices , 2012, RR.

[91]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[92]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[93]  Rafael Peñaloza,et al.  On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm , 2011, FroCoS.

[94]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[95]  Rafael Peñaloza,et al.  Gödel Negation Makes Unwitnessed Consistency Crisp , 2012, Description Logics.

[96]  Markus Krötzsch,et al.  Practical Reasoning with Nominals in the EL Family of Description Logics , 2012, KR.

[97]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[98]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[99]  Ian Horrocks,et al.  A Description Logic with Transitive and Inverse Roles and Role Hierarchies , 1999, J. Log. Comput..

[100]  Ulrike Sattler,et al.  The Hybrid µ-Calculus , 2001, IJCAR.

[101]  Birte Glimm,et al.  Extended Caching, Backjumping and Merging for Expressive Description Logics , 2012, IJCAR.

[102]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[103]  Stefanos D. Kollias,et al.  Reasoning with qualified cardinality restrictions in fuzzy Description Logics , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[104]  Àngel García-Cerdaña,et al.  Fuzzy Description Logics and t-norm based fuzzy logics , 2010, Int. J. Approx. Reason..

[105]  Stefan Schlobach,et al.  Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies , 2003, IJCAI.