Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids

We show the linear convergence of a simple first-order algorithm for the minimum-volume enclosing ellipsoid problem and its dual, the D-optimal design problem of statistics. Using similar techniques, we show the linear convergence of the Frank–Wolfe algorithm with away steps applied to the simplex, under conditions different from those of Guélat and Marcotte. Computational tests confirm the attractive features of this method.

[1]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[2]  Corwin L. Atwood,et al.  Optimal and Efficient Designs of Experiments , 1969 .

[3]  Michael J. Todd,et al.  On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids , 2007, Discret. Appl. Math..

[4]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[5]  Leonid Khachiyan,et al.  On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..

[6]  Piyush Kumar,et al.  Minimum-Volume Enclosing Ellipsoids and Core Sets , 2005 .

[7]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[8]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[9]  Patrice Marcotte,et al.  Some comments on Wolfe's ‘away step’ , 1986, Math. Program..

[10]  N. Z. Shor Cut-off method with space extension in convex programming problems , 1977, Cybernetics.

[11]  C. Atwood Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .

[12]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[13]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[14]  H. Wynn Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .

[15]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[16]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[17]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[18]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .