A Giraud-type characterization of the simplicial categories associated to closed model categories as $\infty$-pretopoi

Theorem (after Giraud, SGA 4): Suppose $A$ is a simplicial category. The following conditions are equivalent: (i) There is a cofibrantly generated closed model category $M$ such that $A$ is equivalent to the Dwyer-Kan simplicial localization $L(M)$; (ii) $A$ admits all small homotopy colimits, and there is a small subset of objects of $A$ which are $A$-small, and which generate $A$ by homotopy colimits; (iii) There exists a small 1-category $C$ and a morphism $g:C\to A$ sending objects of $C$ to $A$-small objects, which induces a fully faithful inclusion $i:A\to \hat{C}$, such that $i$ admits a left homotopy-adjoint $\psi$. We call a Segal category $A$ which satisfies these equivalent conditions, an $\infty$-pretopos. Note that (i) implies that $A$ admits all small homotopy limits too. If furthermore there exists $C\to A$ as in (iii) such that the adjoint $\psi$ preserves finite homotopy limits, then we say that $A$ is an ``$\infty$-topos''.

[1]  C. Simpson Algebraic aspects of higher nonabelian Hodge theory , 1999, math/9902067.

[2]  Charles Rezk,et al.  A model for the homotopy theory of homotopy theory , 1998, math/9811037.

[3]  C. Rezk,et al.  Fibrations and homotopy colimits of simplicial sheaves , 1998, math/9811038.

[4]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[5]  M. Batanin Homotopy coherent category theory and A∞-structures in monoidal categories , 1998 .

[6]  C. Simpson Effective generalized Seifert-Van Kampen: how to calculate $ΩX$ , 1997 .

[7]  C. Simpson Limits in $n$-categories , 1997, alg-geom/9708010.

[8]  J. Baez An Introduction to n-Categories , 1997, Category Theory and Computer Science.

[9]  C. Simpson A closed model structure for $n$-categories, internal $Hom$, $n$-stacks and generalized Seifert-Van Kampen , 1997, alg-geom/9704006.

[10]  J. Baez,et al.  Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997, q-alg/9702014.

[11]  T. Porter,et al.  Homotopy coherent category theory , 1997 .

[12]  Philip S. Hirschhorn,et al.  Model categories and more general abstract homotopy theory , 1997 .

[13]  C. Simpson The topological realization of a simplicial presheaf , 1996, q-alg/9609004.

[14]  C. Simpson Flexible sheaves , 1996, q-alg/9608025.

[15]  Zouhair Tamsamani,et al.  Sur des notions de n-catégorie et n-groupoi͏̈de non strictes via des ensembles multi-simpliciaux , 1996 .

[16]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[17]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[18]  W. Dwyer,et al.  HOMOTOPY COMMUTATIVE DIAGRAMS AND THEIR REALIZATIONS , 1989 .

[19]  W. Dwyer,et al.  VIII. Equivalences Between Homotopy Theories of Diagrams , 1988 .

[20]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[21]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[22]  A. Heller Homotopy in functor categories , 1982 .

[23]  W. Dwyer,et al.  Simplicial localizations of categories , 1980 .

[24]  W. Dwyer,et al.  Function complexes in homotopical algebra , 1980 .

[25]  R. Thomason Uniqueness of delooping machines , 1979 .

[26]  R. Vogt Commuting homotopy limits , 1977 .

[27]  David A. Edwards,et al.  Cech and Steenrod Homotopy Theories with Applications to Geometric Topology , 1976 .

[28]  G. Segal,et al.  Categories and cohomology theories , 1974 .

[29]  C. L. REEDY,et al.  HOMOTOPY THEORY OF MODEL CATEGORIES , 1974 .

[30]  Rainer M. Vogt,et al.  Homotopy limits and colimits , 1973 .

[31]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .