A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances

The deluge of digital information in our daily life -- from user-generated content such as microblogs and scientific papers, to online business such as viral marketing and advertising -- offers unprecedented opportunities to explore and exploit the trajectories and structures of the evolution of information cascades. Abundant research efforts, both academic and industrial, have aimed to reach a better understanding of the mechanisms driving the spread of information and quantifying the outcome of information diffusion. This article presents a comprehensive review and categorization of information popularity prediction methods, from feature engineering and stochastic processes, through graph representation, to deep learning-based approaches. Specifically, we first formally define different types of information cascades and summarize the perspectives of existing studies. We then present a taxonomy that categorizes existing works into the aforementioned three main groups as well as the main subclasses in each group, and we systematically review cutting-edge research work. Finally, we summarize the pros and cons of existing research efforts and outline the open challenges and opportunities in this field.

[1]  Xueqi Cheng,et al.  Modeling and Predicting Retweeting Dynamics via a Mixture Process , 2016, WWW.

[2]  Xueqi Cheng,et al.  Cascade Dynamics Modeling with Attention-based Recurrent Neural Network , 2017, IJCAI.

[3]  Tao Mei,et al.  Towards Cross-Domain Learning for Social Video Popularity Prediction , 2013, IEEE Transactions on Multimedia.

[4]  Tat-Seng Chua,et al.  Micro Tells Macro: Predicting the Popularity of Micro-Videos via a Transductive Model , 2016, ACM Multimedia.

[5]  Le Song,et al.  Linking Micro Event History to Macro Prediction in Point Process Models , 2017, AISTATS.

[6]  Xiaoxia Zhang,et al.  Uncovering and Predicting the Dynamic Process of Collective Attention with Survival Theory , 2017, Scientific Reports.

[7]  Peng Bao,et al.  Cumulative Effect in Information Diffusion: Empirical Study on a Microblogging Network , 2013, PloS one.

[8]  Wenji Mao,et al.  NPP: A neural popularity prediction model for social media content , 2019, Neurocomputing.

[9]  Ke Xu,et al.  On popularity prediction of videos shared in online social networks , 2013, CIKM.

[10]  Dan Cosley,et al.  Predictability of Popularity: Gaps between Prediction and Understanding , 2016, ICWSM.

[11]  Wolfgang Kellerer,et al.  Outtweeting the Twitterers - Predicting Information Cascades in Microblogs , 2010, WOSN.

[12]  Xiao Liu,et al.  Real-time Scholarly Retweeting Prediction System , 2018, COLING.

[13]  Huanbo Luan,et al.  Neural Diffusion Model for Microscopic Cascade Study , 2021, IEEE Transactions on Knowledge and Data Engineering.

[14]  Zhenyu Wang,et al.  Cascade2vec: Learning Dynamic Cascade Representation by Recurrent Graph Neural Networks , 2019, IEEE Access.

[15]  Feng Chen,et al.  Marked Self-Exciting Point Process Modelling of Information Diffusion on Twitter , 2018 .

[16]  Jia Wang,et al.  Topological Recurrent Neural Network for Diffusion Prediction , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[17]  Xueqi Cheng,et al.  Learning User-Specific Latent Influence and Susceptibility from Information Cascades , 2013, AAAI.

[18]  Philip S. Yu,et al.  Predicting trends in social networks via dynamic activeness model , 2013, CIKM.

[19]  Yuxiao Dong,et al.  DeepInf: Social Influence Prediction with Deep Learning , 2018, KDD.

[20]  Yue Liu,et al.  Learning sequential features for cascade outbreak prediction , 2018, Knowledge and Information Systems.

[21]  Ravi Kumar,et al.  Influence and correlation in social networks , 2008, KDD.

[22]  Guihai Chen,et al.  Dual Sequential Prediction Models Linking Sequential Recommendation and Information Dissemination , 2019, KDD.

[23]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[24]  Ibrahim Matta,et al.  Describing and forecasting video access patterns , 2011, 2011 Proceedings IEEE INFOCOM.

[25]  Wei Zhang,et al.  Learning Sequential Correlation for User Generated Textual Content Popularity Prediction , 2018, IJCAI.

[26]  Jiejun Xu,et al.  What's trending tomorrow, today: Using early adopters to discover popular posts on Tumblr , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[27]  Nick Koudas,et al.  Information cascade at group scale , 2013, KDD.

[28]  Longbing Cao,et al.  Attention-Based Transactional Context Embedding for Next-Item Recommendation , 2018, AAAI.

[29]  Miles Osborne,et al.  RT to Win! Predicting Message Propagation in Twitter , 2011, ICWSM.

[30]  Kai Li,et al.  Popularity Prediction of Facebook Videos for Higher Quality Streaming , 2017, USENIX Annual Technical Conference.

[31]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[32]  Yongdong Zhang,et al.  Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks , 2017, IJCAI.

[33]  Amit P. Sheth,et al.  Prediction of Topic Volume on Twitter , 2012 .

[34]  Michele Coscia,et al.  Average is Boring: How Similarity Kills a Meme's Success , 2014, Scientific Reports.

[35]  Nicholas Jing Yuan,et al.  Who Will Reply to/Retweet This Tweet?: The Dynamics of Intimacy from Online Social Interactions , 2016, WSDM.

[36]  Shuai Gao,et al.  Effective and effortless features for popularity prediction in microblogging network , 2014, WWW.

[37]  Jake M. Hofman,et al.  Prediction and explanation in social systems , 2017, Science.

[38]  Meng Zhang,et al.  Multi-feature Fusion for Predicting Social Media Popularity , 2017, ACM Multimedia.

[39]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[40]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[41]  Xueqi Cheng,et al.  Popularity prediction in microblogging network: a case study on sina weibo , 2013, WWW.

[42]  Lada A. Adamic,et al.  The Anatomy of Large Facebook Cascades , 2013, ICWSM.

[43]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[44]  Yiannis Kompatsiaris,et al.  Predicting News Popularity by Mining Online Discussions , 2016, WWW.

[45]  Sho Tsugawa,et al.  Empirical Analysis of the Relation between Community Structure and Cascading Retweet Diffusion , 2019, ICWSM.

[46]  Maosong Sun,et al.  Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks , 2019, IJCAI.

[47]  Lars Kotthoff,et al.  Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA , 2017, J. Mach. Learn. Res..

[48]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Tom Broxton,et al.  Catching a viral video , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[50]  Lada A. Adamic,et al.  Information Evolution in Social Networks , 2014, WSDM.

[51]  Swapnil Mishra,et al.  SIR-Hawkes: Linking Epidemic Models and Hawkes Processes to Model Diffusions in Finite Populations , 2017, WWW.

[52]  Jure Leskovec,et al.  Seeing the forest for the trees: new approaches to forecasting cascades , 2016, WebSci.

[53]  Cheng Li,et al.  Joint Modeling of Text and Networks for Cascade Prediction , 2018, ICWSM.

[54]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[55]  Serge Fdida,et al.  From popularity prediction to ranking online news , 2014, Social Network Analysis and Mining.

[56]  Cheng Li,et al.  DeepCas: An End-to-end Predictor of Information Cascades , 2016, WWW.

[57]  Siyuan Liu,et al.  Modelling cascades over time in microblogs , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[58]  Niloy Ganguly,et al.  LMPP: A Large Margin Point Process Combining Reinforcement and Competition for Modeling Hashtag Popularity , 2017, IJCAI.

[59]  Junjie Yao,et al.  Community Level Diffusion Extraction , 2015, SIGMOD Conference.

[60]  Wenji Mao,et al.  Exploring Trends and Patterns of Popularity Stage Evolution in Social Media , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[61]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[62]  Jiebo Luo,et al.  The wisdom of social multimedia: using flickr for prediction and forecast , 2010, ACM Multimedia.

[63]  Gao Cong,et al.  Will this #hashtag be popular tomorrow? , 2012, SIGIR '12.

[64]  Jiangchuan Liu,et al.  Understanding the Characteristics of Internet Short Video Sharing: A YouTube-Based Measurement Study , 2013, IEEE Transactions on Multimedia.

[65]  Yiqun Liu,et al.  Predicting the popularity of web 2.0 items based on user comments , 2014, SIGIR.

[66]  Serge Fdida,et al.  Predicting the popularity of online articles based on user comments , 2011, WIMS '11.

[67]  Yang Yang,et al.  Predicting trending messages and diffusion participants in microblogging network , 2014, SIGIR.

[68]  Scott Sanner,et al.  Twitter-driven YouTube Views: Beyond Individual Influencers , 2014, ACM Multimedia.

[69]  Rediet Abebe Can Cascades be Predicted? , 2014 .

[70]  Marie Katsurai,et al.  Recipe Popularity Prediction with Deep Visual-Semantic Fusion , 2017, CIKM.

[71]  Tomasz Trzcinski,et al.  Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention , 2018, IEEE Access.

[72]  Parag Singla,et al.  On the role of conductance, geography and topology in predicting hashtag virality , 2015, Social Network Analysis and Mining.

[73]  Diego Garlaschelli,et al.  Patterns of link reciprocity in directed networks. , 2004, Physical review letters.

[74]  Jure Leskovec,et al.  What's in a Name? Understanding the Interplay between Titles, Content, and Communities in Social Media , 2013, ICWSM.

[75]  Fei Wang,et al.  Uncovering and predicting the dynamic process of information cascades with survival model , 2017, Knowledge and Information Systems.

[76]  Krishna P. Gummadi,et al.  Does content determine information popularity in social media?: a case study of youtube videos' content and their popularity , 2014, CHI.

[77]  Ismail Hakki Toroslu,et al.  A Network-Based Model for Predicting Hashtag Breakouts in Twitter , 2015, SBP.

[78]  Xingshe Zhou,et al.  Predicting the content dissemination trends by repost behavior modeling in mobile social networks , 2014, J. Netw. Comput. Appl..

[79]  David A. Shamma,et al.  Viral Actions: Predicting Video View Counts Using Synchronous Sharing Behaviors , 2011, ICWSM.

[80]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[81]  D. Cox Regression Models and Life-Tables , 1972 .

[82]  Zhe Zhao,et al.  Predicting bursts and popularity of hashtags in real-time , 2014, SIGIR.

[83]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[84]  Wenji Mao,et al.  Popularity prediction based on interactions of online contents , 2016, 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS).

[85]  Xiaohua Hu,et al.  Video Popularity Prediction by Sentiment Propagation via Implicit Network , 2015, CIKM.

[86]  Guihai Chen,et al.  Cease with Bass: A Framework for Real-Time Topic Detection and Popularity Prediction Based on Long-Text Contents , 2018, CSoNet.

[87]  Gleb Gusev,et al.  Prediction of retweet cascade size over time , 2012, CIKM.

[88]  A. Vespignani,et al.  Competition among memes in a world with limited attention , 2012, Scientific Reports.

[89]  Matúš Medo,et al.  Identification and impact of discoverers in online social systems , 2015, Scientific Reports.

[90]  Serge Fdida,et al.  A survey on predicting the popularity of web content , 2014, Journal of Internet Services and Applications.

[91]  Swapnil Mishra,et al.  Feature Driven and Point Process Approaches for Popularity Prediction , 2016, CIKM.

[92]  Frank M. Bass,et al.  A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..

[93]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[94]  Lars Backstrom,et al.  Structural diversity in social contagion , 2012, Proceedings of the National Academy of Sciences.

[95]  Nitesh V. Chawla,et al.  Can Scientific Impact Be Predicted? , 2016, IEEE Transactions on Big Data.

[96]  Wenwu Zhu,et al.  Collective Human Behavior in Cascading System: Discovery, Modeling and Applications , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[97]  Fei Wang,et al.  Cascading outbreak prediction in networks: a data-driven approach , 2013, KDD.

[98]  Juan-Zi Li,et al.  Understanding retweeting behaviors in social networks , 2010, CIKM.

[99]  Lexing Xie,et al.  Beyond Views: Measuring and Predicting Engagement in Online Videos , 2017, ICWSM.

[100]  Eric Gilbert,et al.  Widespread underprovision on Reddit , 2013, CSCW.

[101]  Changsheng Li,et al.  On Modeling and Predicting Individual Paper Citation Count over Time , 2016, IJCAI.

[102]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[103]  Ruocheng Guo,et al.  Toward order-of-magnitude cascade prediction , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[104]  Zhenzhong Chen,et al.  A Multimodal Variational Encoder-Decoder Framework for Micro-video Popularity Prediction , 2020, WWW.

[105]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[106]  Noah A. Smith,et al.  What's Worthy of Comment? Content and Comment Volume in Political Blogs , 2010, ICWSM.

[107]  Michael Gamon,et al.  Predicting Responses to Microblog Posts , 2012, NAACL.

[108]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[109]  Sung-Hwan Kim,et al.  Predicting the Virtual Temperature of Web-Blog Articles as a Measurement Tool for Online Popularity , 2011, 2011 IEEE 11th International Conference on Computer and Information Technology.

[110]  Jin Xu,et al.  Popularity Prediction on Online Articles with Deep Fusion of Temporal Process and Content Features , 2019, AAAI.

[111]  Kunpeng Zhang,et al.  Information Cascades Modeling via Deep Multi-Task Learning , 2019, SIGIR.

[112]  Thomas Gottron,et al.  Bad news travel fast: a content-based analysis of interestingness on Twitter , 2011, WebSci '11.

[113]  Cameron Marlow,et al.  A 61-million-person experiment in social influence and political mobilization , 2012, Nature.

[114]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[115]  Gao Cong,et al.  On predicting the popularity of newly emerging hashtags in Twitter , 2013, J. Assoc. Inf. Sci. Technol..

[116]  Kevin Chen-Chuan Chang,et al.  A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[117]  Shuai Gao,et al.  Modeling and Predicting Retweeting Dynamics on Microblogging Platforms , 2015, WSDM.

[118]  Weiwei Liu,et al.  Effectively Predicting Whether and When a Topic Will Become Prevalent in a Social Network , 2015, AAAI.

[119]  Duncan J. Watts,et al.  The Structural Virality of Online Diffusion , 2015, Manag. Sci..

[120]  Ambuj K. Singh,et al.  GPOP: Scalable Group-level Popularity Prediction for Online Content in Social Networks , 2017, WWW.

[121]  James Caverlee,et al.  Analyzing and Predicting Community Preference of Socially Generated Metadata: A Case Study on Comments in the Digg Community , 2009, ICWSM.

[122]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[123]  Wenji Mao,et al.  An attention-based neural popularity prediction model for social media events , 2017, 2017 IEEE International Conference on Intelligence and Security Informatics (ISI).

[124]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[125]  Zubair Shafiq,et al.  Cascade size prediction in online social networks , 2017, 2017 IFIP Networking Conference (IFIP Networking) and Workshops.

[126]  Xiaolong Jin,et al.  Modeling and Predicting Popularity Dynamics of Microblogs using Self-Excited Hawkes Processes , 2015, WWW.

[127]  Emily B. Fox,et al.  A Bayesian Approach for Predicting the Popularity of Tweets , 2013, ArXiv.

[128]  Lei Yang,et al.  We know what @you #tag: does the dual role affect hashtag adoption? , 2012, WWW.

[129]  Saverio Niccolini,et al.  A peek into the future: predicting the evolution of popularity in user generated content , 2013, WSDM.

[130]  J. Leskovec,et al.  Cascading Behavior in Large Blog Graphs Patterns and a model , 2006 .

[131]  Xueqi Cheng,et al.  DeepHawkes: Bridging the Gap between Prediction and Understanding of Information Cascades , 2017, CIKM.

[132]  Jussara M. Almeida,et al.  Using early view patterns to predict the popularity of youtube videos , 2013, WSDM.

[133]  Scott Sanner,et al.  The Lifecyle of a Youtube Video: Phases, Content and Popularity , 2015, ICWSM.

[134]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[135]  Renaud Lambiotte,et al.  TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics , 2016, ICWSM.

[136]  Niklas Carlsson,et al.  The untold story of the clones: content-agnostic factors that impact YouTube video popularity , 2012, KDD.

[137]  Stefan Stieglitz,et al.  Political Communication and Influence through Microblogging--An Empirical Analysis of Sentiment in Twitter Messages and Retweet Behavior , 2012, 2012 45th Hawaii International Conference on System Sciences.

[138]  Joemon M. Jose,et al.  "Nobody comes here anymore, it's too crowded"; Predicting Image Popularity on Flickr , 2014, ICMR.

[139]  Ji-Rong Wen,et al.  Neural Network Based Popularity Prediction by Linking Online Content with Knowledge Bases , 2019, PAKDD.

[140]  Jian Pei,et al.  Influence Analysis in Evolving Networks: A Survey , 2021, IEEE Transactions on Knowledge and Data Engineering.

[141]  Rongrong Ji,et al.  Large-scale visual sentiment ontology and detectors using adjective noun pairs , 2013, ACM Multimedia.

[142]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[143]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[144]  Fan Zhou,et al.  Information Diffusion Prediction via Recurrent Cascades Convolution , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[145]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[146]  Cheng-Te Li,et al.  The roles of network communities in social information diffusion , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[147]  Flavio Figueiredo,et al.  The tube over time: characterizing popularity growth of youtube videos , 2011, WSDM '11.

[148]  Wenji Mao,et al.  Predicting Popularity of Forum Threads for Public Events Security , 2014, 2014 IEEE Joint Intelligence and Security Informatics Conference.

[149]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[150]  Wei Zhang,et al.  User-guided Hierarchical Attention Network for Multi-modal Social Image Popularity Prediction , 2018, WWW.

[151]  Alberto Montresor,et al.  CAS2VEC: Network-Agnostic Cascade Prediction in Online Social Networks , 2018, 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS).

[152]  Raffay Hamid,et al.  What makes an image popular? , 2014, WWW.

[153]  Diyi Yang,et al.  Hierarchical Attention Networks for Document Classification , 2016, NAACL.

[154]  Zongpeng Li,et al.  Youtube traffic characterization: a view from the edge , 2007, IMC '07.

[155]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[156]  Nitesh V. Chawla,et al.  Will This Paper Increase Your h-index?: Scientific Impact Prediction , 2014, WSDM.

[157]  Ramesh Sharda,et al.  Modeling brand post popularity dynamics in online social networks , 2014, Decis. Support Syst..

[158]  Flavio Figueiredo,et al.  On the prediction of popularity of trends and hits for user generated videos , 2013, WSDM.

[159]  Jure Leskovec,et al.  Global Diffusion via Cascading Invitations: Structure, Growth, and Homophily , 2015, WWW.

[160]  Jure Leskovec,et al.  The bursty dynamics of the Twitter information network , 2014, WWW.

[161]  Jie Tang,et al.  Citation count prediction: learning to estimate future citations for literature , 2011, CIKM '11.

[162]  Jure Leskovec,et al.  SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity , 2015, KDD.

[163]  Kavé Salamatian,et al.  An Approach to Model and Predict the Popularity of Online Contents with Explanatory Factors , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[164]  Tsuhan Chen,et al.  A latent social approach to YouTube popularity prediction , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[165]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[166]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[167]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[168]  Utkarsh Upadhyay,et al.  Recurrent Marked Temporal Point Processes: Embedding Event History to Vector , 2016, KDD.

[169]  Przemysław Rokita,et al.  Predicting Popularity of Online Videos Using Support Vector Regression , 2017, IEEE Transactions on Multimedia.

[170]  Christos Faloutsos,et al.  Rise and fall patterns of information diffusion: model and implications , 2012, KDD.

[171]  Padhraic Smyth,et al.  Dynamic Egocentric Models for Citation Networks , 2011, ICML.

[172]  Huawei Shen,et al.  Popularity Prediction on Social Platforms with Coupled Graph Neural Networks , 2020, WSDM.

[173]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[174]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[175]  Xuelong Li,et al.  Modeling Information Diffusion over Social Networks for Temporal Dynamic Prediction , 2017, IEEE Trans. Knowl. Data Eng..

[176]  Felix Naumann,et al.  Analyzing and predicting viral tweets , 2013, WWW.

[177]  E. Rogers Diffusion of Innovations , 1962 .

[178]  Bernardo A. Huberman,et al.  The Pulse of News in Social Media: Forecasting Popularity , 2012, ICWSM.

[179]  Ari Rappoport,et al.  What's in a hashtag?: content based prediction of the spread of ideas in microblogging communities , 2012, WSDM '12.

[180]  Zhoujun Li,et al.  Burst Time Prediction in Cascades , 2015, AAAI.

[181]  WU SIQI Estimating Attention Flow in Online Video Network , 2019 .

[182]  Ronggang Wang,et al.  Social Media Popularity Prediction: A Multiple Feature Fusion Approach with Deep Neural Networks , 2019, ACM Multimedia.

[183]  Shaojie Tang,et al.  Taxonomy and Evaluation for Microblog Popularity Prediction , 2019, ACM Trans. Knowl. Discov. Data.

[184]  Fei Wang,et al.  From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics , 2015, 2015 IEEE International Conference on Data Mining.

[185]  Yicheng Zhang,et al.  Dynamics of information diffusion and its applications on complex networks , 2016 .

[186]  Nei Kato,et al.  A Novel Embedding Method for Information Diffusion Prediction in Social Network Big Data , 2017, IEEE Transactions on Industrial Informatics.

[187]  Ruocheng Guo,et al.  A comparison of methods for cascade prediction , 2016, 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[188]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[189]  Venkata Rama Kiran Garimella,et al.  Who watches (and shares) what on youtube? and when?: using twitter to understand youtube viewership , 2013, WSDM.

[190]  Wei Zhang,et al.  Factorization Meets Memory Network: Learning to Predict Activity Popularity , 2018, DASFAA.

[191]  Sen Wang,et al.  A Comparative Study of Transactional and Semantic Approaches for Predicting Cascades on Twitter , 2018, IJCAI.

[192]  Marian-Andrei Rizoiu,et al.  Modeling Information Cascades with Self-exciting Processes via Generalized Epidemic Models , 2020, WSDM.

[193]  Huzefa Rangwala,et al.  Digging Digg: Comment Mining, Popularity Prediction, and Social Network Analysis , 2009, 2009 International Conference on Web Information Systems and Mining.

[194]  Elliot Rabinovich,et al.  Competition and Coopetition among Social Media Content , 2019, HICSS.

[195]  Swapnil Mishra,et al.  Modeling Popularity in Asynchronous Social Media Streams with Recurrent Neural Networks , 2018, ICWSM.

[196]  Matthew Rowe,et al.  Predicting Discussions on the Social Semantic Web , 2011, ESWC.

[197]  Yongdong Zhang,et al.  Unfolding Temporal Dynamics: Predicting Social Media Popularity Using Multi-scale Temporal Decomposition , 2016, AAAI.

[198]  Flavio Figueiredo,et al.  On the Dynamics of Social Media Popularity: A YouTube Case Study , 2014, TOIT.

[199]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[200]  Duncan J. Watts,et al.  Exploring Limits to Prediction in Complex Social Systems , 2016, WWW.

[201]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[202]  Lexing Xie,et al.  Estimating Attention Flow in Online Video Networks , 2019, Proc. ACM Hum. Comput. Interact..

[203]  Hongyuan Zha,et al.  Correlated Cascades: Compete or Cooperate , 2015, AAAI.

[204]  Si Zhang,et al.  Graph convolutional networks: a comprehensive review , 2019, Computational Social Networks.

[205]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[206]  Oana-Maria Camburu Explaining Deep Neural Networks , 2020, ArXiv.

[207]  Jure Leskovec,et al.  Clash of the Contagions: Cooperation and Competition in Information Diffusion , 2012, 2012 IEEE 12th International Conference on Data Mining.

[208]  Luís Torgo,et al.  A review on web content popularity prediction: Issues and open challenges , 2019, Online Soc. Networks Media.

[209]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[210]  Zhe Zhao,et al.  Towards the prediction problems of bursting hashtags on Twitter , 2015, J. Assoc. Inf. Sci. Technol..

[211]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[212]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[213]  Zhuzhong Qian,et al.  Structure Pattern Analysis and Cascade Prediction in Social Networks , 2016, ECML/PKDD.

[214]  Maarten de Rijke,et al.  News Comments: Exploring, Modeling, and Online Prediction , 2010, ECIR.

[215]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[216]  Bo Pang,et al.  The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter , 2014, ACL.

[217]  M. de Rijke,et al.  Predicting the volume of comments on online news stories , 2009, CIKM.

[218]  Himabindu Lakkaraju,et al.  Attention prediction on social media brand pages , 2011, CIKM '11.

[219]  Albert-László Barabási,et al.  Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes , 2014, AAAI.

[220]  Hakim Hacid,et al.  A predictive model for the temporal dynamics of information diffusion in online social networks , 2012, WWW.

[221]  Siqi Shen,et al.  Predicting the implicit and the explicit video popularity in a User Generated Content site with enhanced social features , 2018, Comput. Networks.

[222]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[223]  Filippo Menczer,et al.  Predicting Successful Memes Using Network and Community Structure , 2014, ICWSM.

[224]  Jürgen Pfeffer,et al.  Characterizing the life cycle of online news stories using social media reactions , 2013, CSCW.

[225]  Boleslaw K. Szymanski,et al.  Predicting Viral News Events in Online Media , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[226]  Ilias N. Lymperopoulos Predicting the popularity growth of online content: Model and algorithm , 2016, Inf. Sci..

[227]  Bernardo A. Huberman,et al.  Trends in Social Media: Persistence and Decay , 2011, ICWSM.

[228]  Shuai Gao,et al.  Popularity Prediction in Microblogging Network , 2014, APWeb.

[229]  Shaojie Tang,et al.  STH-Bass: A Spatial-Temporal Heterogeneous Bass Model to Predict Single-Tweet Popularity , 2016, DASFAA.

[230]  Kavé Salamatian,et al.  Modeling and predicting the popularity of online contents with Cox proportional hazard regression model , 2012, Neurocomputing.

[231]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[232]  Yong-Yeol Ahn,et al.  Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems , 2009, IEEE/ACM Transactions on Networking.

[233]  Greg Stoddard,et al.  Popularity Dynamics and Intrinsic Quality in Reddit and Hacker News , 2015, ICWSM.

[234]  Virgílio A. F. Almeida,et al.  The impact of visual attributes on online image diffusion , 2014, WebSci '14.

[235]  Scott Counts,et al.  Predicting the Speed, Scale, and Range of Information Diffusion in Twitter , 2010, ICWSM.

[236]  Chengqi Yi,et al.  Mining the key predictors for event outbreaks in social networks , 2016 .

[237]  Lada A. Adamic,et al.  Detecting Large Reshare Cascades in Social Networks , 2017, WWW.

[238]  Goce Trajcevski,et al.  Variational Information Diffusion for Probabilistic Cascades Prediction , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[239]  Chang-Tien Lu,et al.  Online flu epidemiological deep modeling on disease contact network , 2019, GeoInformatica.

[240]  Sean J. Taylor,et al.  Social Influence Bias: A Randomized Experiment , 2013, Science.

[241]  Didier Sornette,et al.  Robust dynamic classes revealed by measuring the response function of a social system , 2008, Proceedings of the National Academy of Sciences.

[242]  Ralf Herbrich,et al.  Predicting Information Spreading in Twitter , 2010 .

[243]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[244]  Anirban Mahanti,et al.  Characterizing and Predicting Viral-and-Popular Video Content , 2015, CIKM.

[245]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[246]  Jiawei Han,et al.  Predicting future popularity trend of events in microblogging platforms , 2012, ASIST.

[247]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[248]  Alberto Del Bimbo,et al.  Image Popularity Prediction in Social Media Using Sentiment and Context Features , 2015, ACM Multimedia.

[249]  Qiang Yang,et al.  The Lifecycle and Cascade of WeChat Social Messaging Groups , 2015, WWW.

[250]  Scott Sanner,et al.  Expecting to be HIP: Hawkes Intensity Processes for Social Media Popularity , 2016, WWW.

[251]  M. de Rijke,et al.  Predicting IMDB Movie Ratings Using Social Media , 2012, ECIR.

[252]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[253]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[254]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[255]  Albert-László Barabási,et al.  Quantifying Long-Term Scientific Impact , 2013, Science.

[256]  Chenhao Tan,et al.  On the Interplay between Social and Topical Structure , 2011, ICWSM.

[257]  Gleb Gusev,et al.  Predicting the Audience Size of a Tweet , 2013, ICWSM.