Stochastic Multidisciplinary Analysis Under Epistemic Uncertainty

[1]  Thaweepat Buranathiti,et al.  Model validation via uncertainty propagation and data transformations , 2004 .

[2]  Pramote Dechaumphai,et al.  Application of integrated fluid-thermal-structural analysis methods , 1991 .

[3]  Sankaran Mahadevan,et al.  Validation and error estimation of computational models , 2006, Reliab. Eng. Syst. Saf..

[4]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[5]  Wei Chen,et al.  Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design , 2005 .

[6]  Kroo Ilan,et al.  Multidisciplinary Optimization Methods for Aircraft Preliminary Design , 1994 .

[7]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[8]  L. Zadeh Toward a Perception-Based Theory of Probabilistic Reasoning , 2000, Rough Sets and Current Trends in Computing.

[9]  S. Mahadevan,et al.  Collocation-based stochastic finite element analysis for random field problems , 2007 .

[10]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[11]  Arthur F. Kaupe Algorithm 144: Treesort 2: , 1962, Commun. ACM.

[12]  Wei Chen,et al.  Multi-point objective-oriented sequential sampling strategy for constrained robust design , 2015 .

[13]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..

[14]  Taiki Matsumura,et al.  Reliability Based Design Optimization Modeling Future Redesign With Different Epistemic Uncertainty Treatments , 2013 .

[15]  Jay D. Johnson,et al.  A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory , 2007 .

[16]  E. Thornton Thermal structures - Four decades of progress , 1990 .

[17]  Sankaran Mahadevan,et al.  Inference of equivalent initial flaw size under multiple sources of uncertainty , 2011 .

[18]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[19]  Wei Chen,et al.  Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty , 2006 .

[20]  Ted Belytschko,et al.  Fluid-structure interaction , 1980 .

[21]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[22]  T. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2005, DAC 2003.

[23]  Panos Y. Papalambros,et al.  Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty , 2006 .

[24]  Sankaran Mahadevan,et al.  Design Optimization under Aleatory and Epistemic Uncertainties , 2012 .

[25]  Sankaran Mahadevan,et al.  A probabilistic approach for representation of interval uncertainty , 2011, Reliab. Eng. Syst. Saf..

[26]  John E. Renaud,et al.  Worst case propagated uncertainty of multidisciplinary systems in robust design optimization , 2000 .

[27]  Natasha Smith,et al.  Efficient first-order reliability analysis of multidisciplinary systems , 2006 .

[28]  Sankaran Mahadevan,et al.  Inclusion of Model Errors in Reliability-Based Optimization , 2006 .

[29]  Wei Chen,et al.  Toward a Better Understanding of Model Validation Metrics , 2011 .

[30]  Sankaran Mahadevan,et al.  BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION , 2011 .

[31]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[32]  Sankaran Mahadevan,et al.  Separating the contributions of variability and parameter uncertainty in probability distributions , 2013, Reliab. Eng. Syst. Saf..

[33]  Sankaran Mahadevan,et al.  Discretization Error Estimation in Multidisciplinary Simulations , 2011 .

[34]  W. M. McKeeman,et al.  Algorithm 145: Adaptive numerical integration by Simpson's rule , 1962, Communications of the ACM.

[35]  Hong-Zhong Huang,et al.  Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties , 2009 .

[36]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[37]  Sankaran Mahadevan,et al.  Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data , 2011, Reliab. Eng. Syst. Saf..

[38]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[39]  B. Youn,et al.  Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data , 2006 .

[40]  Sankaran Mahadevan,et al.  Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty , 2012 .

[41]  E. S. Pearson THE PROBABILITY INTEGRAL TRANSFORMATION FOR TESTING GOODNESS OF FIT AND COMBINING INDEPENDENT TESTS OF SIGNIFICANCE , 1938 .

[42]  Sankaran Mahadevan,et al.  Quantitative model validation techniques: New insights , 2012, Reliab. Eng. Syst. Saf..

[43]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[44]  Bin Liang,et al.  ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS , 2011 .

[45]  John E. Renaud,et al.  Uncertainty quantification using evidence theory in multidisciplinary design optimization , 2004, Reliab. Eng. Syst. Saf..