Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO2 Nanocrystals

The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.

[1]  A. Majumdar,et al.  Deterministic Quantum Light Arrays from Giant Silica-Shelled Quantum Dots. , 2022, ACS applied materials & interfaces.

[2]  Zhenda Lu,et al.  Single CdSe Quantum Dots Positioned in Nanostructured Heterogeneous Templates: Implications for High-Precision Nanoassembly , 2022, ACS Applied Nano Materials.

[3]  X. Chen,et al.  Ultrahigh-resolution quantum-dot light-emitting diodes , 2022, Nature Photonics.

[4]  T. C. Spiekermann,et al.  Single-Photon Emission from Individual Nanophotonic-Integrated Colloidal Quantum Dots , 2021, ACS Photonics.

[5]  Michael Saliba,et al.  Emerging perovskite monolayers , 2021, Nature Materials.

[6]  L. Brus,et al.  Nanocrystal Quantum Dots: From Discovery to Modern Development. , 2021, ACS nano.

[7]  R. Schaller,et al.  Colloidal quantum dot lasers , 2021, Nature Reviews Materials.

[8]  O. Bakr,et al.  Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors , 2021 .

[9]  P. Senellart,et al.  The race for the ideal single-photon source is on , 2021, Nature Nanotechnology.

[10]  Lih Y. Lin,et al.  The Path to Enlightenment: Progress and Opportunities in High Efficiency Halide Perovskite Light-Emitting Devices , 2021, ACS Photonics.

[11]  R. Rapaport,et al.  Overcoming the Rate-Directionality Trade-off: A Room-Temperature Ultrabright Quantum Light Source. , 2020, ACS nano.

[12]  H. Jung,et al.  High-Efficiency Perovskite Solar Cells. , 2020, Chemical reviews.

[13]  A. Malko,et al.  Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas , 2020, 2005.11548.

[14]  S. Maier,et al.  Electrical control of single-photon emission in highly charged individual colloidal quantum dots , 2020, Science Advances.

[15]  P. Mulvaney,et al.  Fabrication of Single‐Nanocrystal Arrays , 2019, Advanced materials.

[16]  Jeremy J. Baumberg,et al.  Present and Future of Surface-Enhanced Raman Scattering , 2019, ACS nano.

[17]  Heiko Wolf,et al.  Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. , 2018, Soft matter.

[18]  Khellil Sefiane,et al.  Mechanisms of pattern formation from dried sessile drops. , 2018, Advances in colloid and interface science.

[19]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[20]  L. Chi,et al.  Modulating the Spatial Electrostatic Potential for 1D Colloidal Nanoparticles Assembly , 2017 .

[21]  A. Femius Koenderink,et al.  Single-Photon Nanoantennas , 2017, ACS photonics.

[22]  Cherie R. Kagan,et al.  Plasmon Resonances in Self-Assembled Two-Dimensional Au Nanocrystal Metamolecules. , 2017, ACS nano.

[23]  D. Zang,et al.  Wetting and Drying of Colloidal Droplets: Physics and Pattern Formation , 2016 .

[24]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[25]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[26]  T. Aubert,et al.  Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots. , 2015, Nano letters.

[27]  A. Nurmikko,et al.  Reusable Inorganic Templates for Electrostatic Self-Assembly of Individual Quantum Dots, Nanodiamonds, and Lanthanide-Doped Nanoparticles. , 2015, Nano letters.

[28]  H. Wolf,et al.  Insights into mechanisms of capillary assembly. , 2015, Faraday discussions.

[29]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[30]  Mario Malerba,et al.  Controlling Wetting and Self‐Assembly Dynamics by Tailored Hydrophobic and Oleophobic Surfaces , 2014, Advanced materials.

[31]  J. Q. Grim,et al.  Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route , 2014 .

[32]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[33]  Chad A Mirkin,et al.  Capillary force-driven, large-area alignment of multi-segmented nanowires. , 2014, ACS nano.

[34]  Phillip Christopher,et al.  Direct Photocatalysis by Plasmonic Nanostructures , 2014 .

[35]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[36]  Federico Capasso,et al.  Plasmonic mode engineering with templated self-assembled nanoclusters. , 2012, Nano letters.

[37]  I. Suemune,et al.  Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters , 2012, 1207.6472.

[38]  L. Novotný,et al.  Antennas for light , 2011 .

[39]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[40]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[41]  A. Meijerink,et al.  On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method , 2008 .

[42]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[43]  Heinz Schmid,et al.  Controlled particle placement through convective and capillary assembly. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  M. Gordon,et al.  Separation of colloidal nanoparticles using capillary immersion forces , 2006 .

[45]  A. Alivisatos,et al.  Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy. , 2005, Nano letters.

[46]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .