Multi-objective differential evolution algorithm based on the non-uniform mutation

A multi-objective differential evolution algorithm based on the non-uniform MDEM is proposed. MDEM employs the (μ + λ) selection strategy and non-uniform mutation operator to generate new population. The non-uniform mutation operator not only increased the pressure of the choice of MDEM algorithm, but also maintained the population diversity. We compare MDEM with NSGA-II, SPEA2 and DEMO by the numerical experiments on eight benchmark problems to find that MDEM has better computational results and effectiveness.

[1]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[2]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[3]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[4]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[5]  Weiyi Qian,et al.  Adaptive differential evolution algorithm for multiobjective optimization problems , 2008, Appl. Math. Comput..

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[8]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[11]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[12]  B. V. Babu,et al.  Hybrid multi-objective differential evolution (H-MODE) for optimisation of polyethylene terephthalate (PET) reactor , 2010, Int. J. Bio Inspired Comput..

[13]  Ajith Abraham,et al.  Improved differential evolution algorithm with decentralisation of population , 2011, Int. J. Bio Inspired Comput..

[14]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[15]  Ferrante Neri,et al.  A differential evolution for optimisation in noisy environment , 2010, Int. J. Bio Inspired Comput..

[16]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[19]  N. Madavan Multiobjective optimization using a Pareto differential evolution approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[21]  Qingfu Zhang,et al.  Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[22]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  Shang-Jeng Tsai,et al.  An improved multi-objective particle swarm optimizer for multi-objective problems , 2010, Expert Syst. Appl..

[24]  Yaonan Wang,et al.  Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure , 2010, Soft Comput..