Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic perspective

Based on multiquadric trigonometric spline quasi-interpolation, the paper proposes a scheme for numerical differentiation of noisy data, which is a well-known ill-posed problem in practical applications. In addition, in the perspective of kernel regression, the paper studies its large sample properties including optimal bandwidth selection, convergence rate, almost sure convergence, and uniformly asymptotic normality. Simulations are provided at the end of the paper to demonstrate features of the scheme. Both theoretical results and simulations show that the scheme is simple, easy to compute, and efficient for numerical differentiation of noisy data.

[1]  Driss Sbibih,et al.  Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions , 2013 .

[2]  Shengliang Zhang,et al.  Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations , 2013 .

[3]  Wenwu Gao,et al.  Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant , 2015, Comput. Math. Appl..

[4]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[5]  M. Buhmann On quasi-interpolation with radial basis functions , 1993 .

[6]  P. Grohs Quasi-interpolation in Riemannian manifolds , 2013 .

[7]  Ulrich Stadtmüller,et al.  Bandwidth choice and confidence intervals for derivatives of noisy data , 1987 .

[8]  I. Knowles,et al.  METHODS FOR NUMERICAL DIFFERENTIATION OF NOISY DATA , 2014 .

[9]  Feng Dai,et al.  Pointwise approximation with quasi-interpolation by radial basis functions , 2015, J. Approx. Theory.

[10]  María J. Ibáñez,et al.  Computing quasi-interpolants from the B-form of B-splines , 2011, Math. Comput. Simul..

[11]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[12]  D. Myers Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .

[13]  M. Buhmann Convergence of Univariate Quasi-Interpolation Using Multiquadrics , 1988 .

[14]  V. Demichelis Review of: MR2609585 Abbadi, A.; Barrera, D.; Ibáñez, M. J.; Sbibih, D. A general method for constructing quasi-interpolants from B-splines. J. Comput. Appl. Math. 234 (2010), no. 4, 1324–1337 , 2010 .

[15]  Jean Leray,et al.  Quadratic spline quasi-interpolants and collocation methods , 2009 .

[16]  Allal Guessab,et al.  Increasing the approximation order of spline quasi-interpolants , 2013, J. Comput. Appl. Math..

[17]  Pedro González,et al.  A general spline differential quadrature method based on quasi-interpolation , 2015, J. Comput. Appl. Math..

[18]  Pi-Erh Lin,et al.  Nonparametric estimation of a regression function , 1981 .

[19]  Limin Ma,et al.  Approximation to the k-th derivatives by multiquadric quasi-interpolation method , 2009, J. Comput. Appl. Math..

[20]  Zongmin Wu,et al.  Stability of multiquadric quasi-interpolation to approximate high order derivatives , 2010 .

[21]  R. Jia,et al.  A new version of the Strang-Fix conditions , 1993 .

[22]  Jian Ping Liu,et al.  Generalized Strang–Fix condition for scattered data quasi-interpolation , 2005, Adv. Comput. Math..

[23]  Paul Sablonnière,et al.  Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes , 2008, Math. Comput. Simul..

[24]  Leevan Ling,et al.  Finding Numerical Derivatives for Unstructured and Noisy Data by Multiscale Kernels , 2006, SIAM J. Numer. Anal..

[25]  Wenwu Gao,et al.  Quasi-interpolation for linear functional data , 2012, J. Comput. Appl. Math..

[26]  M. J. Ibáñez,et al.  A general method for constructing quasi-interpolants from B-splines , 2010, J. Comput. Appl. Math..

[27]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[28]  C. Rabut AN INTRODUCTION TO SCHOENBERG'S APPROXIMATION , 1992 .

[29]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[30]  M. J. D. Powell,et al.  Univariate multiquadric approximation: Quasi-interpolation to scattered data , 1992 .

[31]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[32]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[33]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[34]  Tom Lyche,et al.  Quasi-interpolants Based on Trigonometric Splines , 1998 .

[35]  Eero Vainikko,et al.  A Spline Product Quasi-interpolation Method for Weakly Singular Fredholm Integral Equations , 2008, SIAM J. Numer. Anal..

[36]  Xingping Sun,et al.  Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates , 2013, Adv. Comput. Math..

[37]  吴宗敏 SHAPE PRESERVING PROPERTIES AND CONVERGENCE OF UNIVARIATE MULTIQUADRIC QUASI-INTERPOLATION , 1994 .

[38]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[39]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[40]  Wenwu Gao,et al.  A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines , 2014, J. Comput. Appl. Math..

[41]  Nira Dyn,et al.  Multiquadric B-splines , 1996 .

[42]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[43]  Y. Hon,et al.  Reconstruction of numerical derivatives from scattered noisy data , 2005 .

[44]  P. Sablonnière,et al.  Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions , 2004 .

[45]  Paul Sablonnière,et al.  Superconvergence properties of some bivariate $C\sp 1$ quadratic spline quasi-interpolants , 2006 .