Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic perspective
暂无分享,去创建一个
[1] Driss Sbibih,et al. Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions , 2013 .
[2] Shengliang Zhang,et al. Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations , 2013 .
[3] Wenwu Gao,et al. Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant , 2015, Comput. Math. Appl..
[4] Jianhua Z. Huang. Local asymptotics for polynomial spline regression , 2003 .
[5] M. Buhmann. On quasi-interpolation with radial basis functions , 1993 .
[6] P. Grohs. Quasi-interpolation in Riemannian manifolds , 2013 .
[7] Ulrich Stadtmüller,et al. Bandwidth choice and confidence intervals for derivatives of noisy data , 1987 .
[8] I. Knowles,et al. METHODS FOR NUMERICAL DIFFERENTIATION OF NOISY DATA , 2014 .
[9] Feng Dai,et al. Pointwise approximation with quasi-interpolation by radial basis functions , 2015, J. Approx. Theory.
[10] María J. Ibáñez,et al. Computing quasi-interpolants from the B-form of B-splines , 2011, Math. Comput. Simul..
[11] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[12] D. Myers. Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .
[13] M. Buhmann. Convergence of Univariate Quasi-Interpolation Using Multiquadrics , 1988 .
[14] V. Demichelis. Review of: MR2609585 Abbadi, A.; Barrera, D.; Ibáñez, M. J.; Sbibih, D. A general method for constructing quasi-interpolants from B-splines. J. Comput. Appl. Math. 234 (2010), no. 4, 1324–1337 , 2010 .
[15] Jean Leray,et al. Quadratic spline quasi-interpolants and collocation methods , 2009 .
[16] Allal Guessab,et al. Increasing the approximation order of spline quasi-interpolants , 2013, J. Comput. Appl. Math..
[17] Pedro González,et al. A general spline differential quadrature method based on quasi-interpolation , 2015, J. Comput. Appl. Math..
[18] Pi-Erh Lin,et al. Nonparametric estimation of a regression function , 1981 .
[19] Limin Ma,et al. Approximation to the k-th derivatives by multiquadric quasi-interpolation method , 2009, J. Comput. Appl. Math..
[20] Zongmin Wu,et al. Stability of multiquadric quasi-interpolation to approximate high order derivatives , 2010 .
[21] R. Jia,et al. A new version of the Strang-Fix conditions , 1993 .
[22] Jian Ping Liu,et al. Generalized Strang–Fix condition for scattered data quasi-interpolation , 2005, Adv. Comput. Math..
[23] Paul Sablonnière,et al. Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes , 2008, Math. Comput. Simul..
[24] Leevan Ling,et al. Finding Numerical Derivatives for Unstructured and Noisy Data by Multiscale Kernels , 2006, SIAM J. Numer. Anal..
[25] Wenwu Gao,et al. Quasi-interpolation for linear functional data , 2012, J. Comput. Appl. Math..
[26] M. J. Ibáñez,et al. A general method for constructing quasi-interpolants from B-splines , 2010, J. Comput. Appl. Math..
[27] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[28] C. Rabut. AN INTRODUCTION TO SCHOENBERG'S APPROXIMATION , 1992 .
[29] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[30] M. J. D. Powell,et al. Univariate multiquadric approximation: Quasi-interpolation to scattered data , 1992 .
[31] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[32] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[33] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..
[34] Tom Lyche,et al. Quasi-interpolants Based on Trigonometric Splines , 1998 .
[35] Eero Vainikko,et al. A Spline Product Quasi-interpolation Method for Weakly Singular Fredholm Integral Equations , 2008, SIAM J. Numer. Anal..
[36] Xingping Sun,et al. Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates , 2013, Adv. Comput. Math..
[37] 吴宗敏. SHAPE PRESERVING PROPERTIES AND CONVERGENCE OF UNIVARIATE MULTIQUADRIC QUASI-INTERPOLATION , 1994 .
[38] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[39] H. Müller,et al. Estimating regression functions and their derivatives by the kernel method , 1984 .
[40] Wenwu Gao,et al. A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines , 2014, J. Comput. Appl. Math..
[41] Nira Dyn,et al. Multiquadric B-splines , 1996 .
[42] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[43] Y. Hon,et al. Reconstruction of numerical derivatives from scattered noisy data , 2005 .
[44] P. Sablonnière,et al. Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions , 2004 .
[45] Paul Sablonnière,et al. Superconvergence properties of some bivariate $C\sp 1$ quadratic spline quasi-interpolants , 2006 .