Inferring Species Networks from Gene Trees in High-Polyploid North American and Hawaiian Violets (Viola, Violaceae)

Abstract The phylogenies of allopolyploids take the shape of networks and cannot be adequately represented as bifurcating trees. Especially for high polyploids (i.e., organisms with more than six sets of nuclear chromosomes), the signatures of gene homoeolog loss, deep coalescence, and polyploidy may become confounded, with the result that gene trees may be congruent with more than one species network. Herein, we obtained the most parsimonious species network by objective comparison of competing scenarios involving polyploidization and homoeolog loss in a high-polyploid lineage of violets (Viola, Violaceae) mostly or entirely restricted to North America, Central America, or Hawaii. We amplified homoeologs of the low-copy nuclear gene, glucose-6-phosphate isomerase (GPI), by single-molecule polymerase chain reaction (PCR) and the chloroplast trnL-F region by conventional PCR for 51 species and subspecies. Topological incongruence among GPI homoeolog subclades, owing to deep coalescence and two instances of putative loss (or lack of detection) of homoeologs, were reconciled by applying the maximum tree topology for each subclade. The most parsimonious species network and the fossil-based calibration of the homoeolog tree favored monophyly of the high polyploids, which has resulted from allodecaploidization 9–14 Ma, involving sympatric ancestors from the extant Viola sections Chamaemelanium (diploid), Plagiostigma (paleotetraploid), and Viola (paleotetraploid). Although two of the high-polyploid lineages (Boreali-Americanae, Pedatae) remained decaploid, recurrent polyploidization with tetraploids of section Plagiostigma within the last 5 Ma has resulted in two 14-ploid lineages (Mexicanae, Nosphinium) and one 18-ploid lineage (Langsdorffianae). This implies a more complex phylogenetic and biogeographic origin of the Hawaiian violets (Nosphinium) than that previously inferred from rDNA data and illustrates the necessity of considering polyploidy in phylogenetic and biogeographic reconstruction.

[1]  B. G. Baldwin,et al.  Hawaiian angiosperm radiations of North American origin. , 2010, Annals of botany.

[2]  C. Campbell,et al.  Ancient allopolyploid speciation in Geinae (Rosaceae): evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences. , 2003, Systematic biology.

[3]  T. Sang Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics , 2002, Critical reviews in biochemistry and molecular biology.

[4]  Toru Tokuoka Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences , 2008, Journal of Plant Research.

[5]  G. D. Carr Additional Chromosome Numbers of Hawaiian Flowering Plants , 1985 .

[6]  T. Utescher,et al.  Stratigraphy of the Cenozoic Lower Rhine Basin, northwestern Germany , 2004 .

[7]  D. Elliott-Fisk,et al.  Topographic History of the Maui Nui Complex, Hawai'i, and Its Implications for Biogeography , 2004 .

[8]  I. Nordal,et al.  A phylogeographic analysis of Viola rupestris: three post‐glacial immigration routes into the Nordic area? , 1998 .

[9]  T. Stuessy,et al.  Evolution and Speciation of Island Plants: Subject index , 1998 .

[10]  Vincent Moulton,et al.  Untangling complex histories of genome mergings in high polyploids. , 2007, Systematic biology.

[11]  D. M. Moore,et al.  CYTOGENETIG RELATIONSHIPS OF VIOLA LACTEA SM. AND OTHER WEST EUROPEAN AROSULATE VIOLETS , 1961 .

[12]  Jim Leebens-Mack,et al.  Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels , 2010, BMC Evolutionary Biology.

[13]  J. Burgh Miocene floras in the lower Rhenish Basin and their ecological interpretation , 1987 .

[14]  J. G. Packer,et al.  A contribution to the taxonomy of Viola adunca , 1974 .

[15]  Martin Krzywinski,et al.  Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA] , 2010, Plant Cell.

[16]  A. Brysting,et al.  Challenges in polyploid phylogenetic reconstruction: A case story from the arctic-alpine Cerastium alpinum complex , 2011 .

[17]  G. D. Carr Evolution and Speciation of Island Plants: Chromosome evolution and speciation in Hawaiian flowering plants , 1998 .

[18]  Pablo A. Goloboff,et al.  TNT, a free program for phylogenetic analysis , 2008 .

[19]  Adolf Engler,et al.  Die Natürlichen Pflanzenfamilien , 1906, Botanical Gazette.

[20]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[21]  L. Rieseberg,et al.  Plant Speciation , 2007, Science.

[22]  K. Sytsma,et al.  Shrinking the Violets: Phylogenetic Relationships of Infrageneric Groups in Viola (Violaceae) Based on Internal Transcribed Spacer DNA Sequences , 1998 .

[23]  G. Burns,et al.  Some natural violet hybrids of north america , 1924 .

[24]  J. Clausen Chromosome Number and Relationship of some North American Species of Viola , 1929 .

[25]  K. Jakobsen,et al.  Evolution of plant RNA polymerase IV/V genes: evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae) , 2010, BMC Evolutionary Biology.

[26]  H. Brinkmann,et al.  Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes. , 2007, Molecular biology and evolution.

[27]  J. Kovar-Eder,et al.  Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). , 2001, Review of palaeobotany and palynology.

[28]  R. L. Taylor,et al.  Flora of the Queen Charlotte Islands. Part 2. Cytological aspects of the vascular plants. , 1969 .

[29]  K. McBreen,et al.  Reconstructing reticulate evolutionary histories of plants. , 2006, Trends in plant science.

[30]  H. Mai Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil II: Dicotyledonen , 2001 .

[31]  A. Franzke,et al.  Gone with the bird: Late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants , 2007 .

[32]  Danica T. Harbaugh Polyploid and Hybrid Origins of Pacific Island Sandalwoods (Santalum, Santalaceae) Inferred from Low‐Copy Nuclear and Flow Cytometry Data , 2008, International Journal of Plant Sciences.

[33]  Bengt Oxelman,et al.  Origin and Evolution of a Circumpolar Polyploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA Polymerase Introns, rDNA, and Chloroplast DNA , 2005 .

[34]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[35]  D. Soltis,et al.  Polyploidy: recurrent formation and genome evolution. , 1999, Trends in ecology & evolution.

[36]  K. Yoo,et al.  Phylogeny of Korean Viola based on ITS sequences , 2005 .

[37]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[38]  M. Donoghue,et al.  Allopolyploid speciation in Persicaria (Polygonaceae): Insights from a low-copy nuclear region , 2008, Proceedings of the National Academy of Sciences.

[39]  S. Harris,et al.  Chloroplast DNA and biosystematics: The effects of intraspecific diversity and plastid transmission , 1991 .

[40]  A. Leitch,et al.  Genomic Plasticity and the Diversity of Polyploid Plants , 2008, Science.

[41]  B. Oxelman,et al.  Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. , 2001, Molecular phylogenetics and evolution.

[42]  L. Ewart,et al.  Pollination, seed set and pollen tube growth investigations in Viola pedata L. , 1990 .

[43]  The taxonomy of the Viola nuttallii complex , 1987 .

[44]  R. Mason-Gamer Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae). , 2008, Molecular phylogenetics and evolution.

[45]  Liang Liu,et al.  Maximum tree: a consistent estimator of the species tree , 2010, Journal of mathematical biology.

[46]  B. Gravendeel,et al.  Chalcone synthase gene lineage diversification confirms allopolyploid evolutionary relationships of European rostrate violets. , 2008, Molecular biology and evolution.

[47]  J. Wendel,et al.  Ribosomal ITS sequences and plant phylogenetic inference. , 2003, Molecular phylogenetics and evolution.

[48]  M. Ainouche,et al.  Molecular phylogeny and reticulate origins of the polyploid Bromus species from section Genea (Poaceae). , 2008, American journal of botany.

[49]  D. Baum,et al.  GENEALOGICAL EVIDENCE OF HOMOPLOID HYBRID SPECIATION IN AN ADAPTIVE RADIATION OF SCAEVOLA (GOODENIACEAE) IN THE HAWAIIAN ISLANDS , 2005, Evolution; international journal of organic evolution.

[50]  J. Havran,et al.  Evolutionary relationships, interisland biogeography, and molecular evolution in the Hawaiian violets (Viola: Violaceae). , 2009, American journal of botany.

[51]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[52]  Jonathan F Wendel,et al.  Polyploidy and Genome Evolution in Plants This Review Comes from a Themed Issue on Genome Studies and Molecular Genetics Edited , 2022 .

[53]  K. Khrapko,et al.  Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations , 2005, Expert review of molecular diagnostics.

[54]  D. Soltis,et al.  Concerted Evolution of rDNA in Recently Formed Tragopogon Allotetraploids Is Typically Associated With an Inverse Correlation Between Gene Copy Number and Expression , 2007, Genetics.

[55]  G. D. Carr CHROMOSOME NUMBERS OF HAWAIIAN FLOWERING PLANTS AND THE SIGNIFICANCE OF CYTOLOGY IN SELECTED TAXA , 1978 .

[56]  Y. Miyaji Untersuchungen ^|^uuml;ber die Chromosomenzahlen bei einigen Viola-Arten , 1913 .

[57]  J. Burgh Allochthonous seed and fruit floras from the pliocene of the lower rhine basin , 1983 .

[58]  Bengt Oxelman,et al.  Origin and evolution of North American polyploid Silene (Caryophyllaceae). , 2007, American journal of botany.

[59]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[60]  M. E. Mort,et al.  The continuing search: low-copy nuclear sequences for lower-level plant molecular phylogenetic studies , 2004 .

[61]  J. Wendel,et al.  Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Mai Die mittelmiozaenen und obermiozaenen Floren aus der Meuroer und Raunoer Folge in der Lausitz: Teil III: Fundstellen und Palaeobiologie , 2001 .

[63]  M. Windham,et al.  Establishing the phylogenetic origin, history, and age of the narrow endemic Viola guadalupensis (Violaceae). , 2011, American journal of botany.

[64]  EVOLUTION AND BIOGEOGRAPHY OF THE WOODY HAWAIIAN VIOLETS (VIOLA, VIOLACEAE): ARCTIC ORIGINS, HERBACEOUS ANCESTRY AND BIRD DISPERSAL , 2000, Evolution; international journal of organic evolution.

[65]  T. Nishikawa Chromosome Counts of Flowering Plants of Hokkaido (21) , 2000 .

[66]  J. Thompson Evolution and Speciation of Island Plants , 1999, Heredity.

[67]  Jonathan F. Wendel,et al.  Phylogenetic Incongruence: Window into Genome History and Molecular Evolution , 1998 .

[68]  K. Strimmer,et al.  TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics , 2004, BMC Evolutionary Biology.

[69]  Katharina T. Huber,et al.  PADRE: a package for analyzing and displaying reticulate evolution , 2009, Bioinform..

[70]  Y. Miyaji Studien über die Zahlenverhältnisse der Chromosomen bei der Gattung Viola , 1929 .

[71]  J. Doyle,et al.  Dating the origins of polyploidy events. , 2010, The New phytologist.

[72]  Sergei Maslov,et al.  Upstream plasticity and downstream robustness in evolution of molecular networks , 2003, BMC Evolutionary Biology.

[73]  K. Müller SeqState: primer design and sequence statistics for phylogenetic DNA datasets. , 2005, Applied bioinformatics.

[74]  J. Clausen CYTOTAXONOMY AND DISTRIBUTIONAL ECOLOGY OF WESTERN NORTH AMERICAN VIOLETS , 1964 .

[75]  Itay Mayrose,et al.  The frequency of polyploid speciation in vascular plants , 2009, Proceedings of the National Academy of Sciences.

[76]  Vincent Moulton,et al.  Reconstructing the evolutionary history of polyploids from multilabeled trees. , 2006, Molecular biology and evolution.

[77]  N. Lersten,et al.  Unique calcium oxalate "duplex" and "concretion" idioblasts in leaves of tribe Naucleeae (Rubiaceae). , 2011, American journal of botany.

[78]  Vincent Moulton,et al.  Inferring polyploid phylogenies from multiply-labeled gene trees , 2009, BMC Evolutionary Biology.