Towards a Combinatorial Classification of Skew Schur Functions
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] B. Sagan. The Symmetric Group , 2001 .
[3] Glânffrwd P Thomas. On Schensted's construction and the multiplication of schur functions , 1978 .
[4] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[5] Etienne Rassart. A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.
[6] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[7] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[8] Hariharan Narayanan. On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .
[9] Victor Reiner,et al. Coincidences among skew Schur functions , 2006 .
[10] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[11] Arthur L. B. Yang,et al. Transformations of Border Strips and Schur Function Determinants , 2004 .
[12] Ian P. Goulden,et al. Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..
[13] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[14] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[15] D. Foata,et al. Combinatoire et Représentation du Groupe Symétrique , 1977 .
[16] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[17] L. Billera,et al. Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions , 2004 .
[18] Christophe Tollu,et al. Stretched Littlewood-Richardson and Kostka Coefficients , 2004 .
[19] Harm Derksen,et al. On the Littlewood–Richardson polynomials , 2002 .