Variable selection in functional additive regression models
暂无分享,去创建一个
Wenceslao González-Manteiga | Manuel Febrero-Bande | Manuel Oviedo de la Fuente | W. González-Manteiga | M. Febrero-Bande | M. D. L. Fuente
[1] C. Mallows. More comments on C p , 1995 .
[2] Gábor J. Székely,et al. The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..
[3] Wenceslao González-Manteiga,et al. Generalized additive models for functional data , 2013 .
[4] Fuhui Long,et al. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[6] C. O’Brien. Statistical Learning with Sparsity: The Lasso and Generalizations , 2016 .
[7] H. Akaike. Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .
[8] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[9] Maria L. Rizzo,et al. Variable selection in regression using maximal correlation and distance correlation , 2015 .
[10] L. Xue. CONSISTENT VARIABLE SELECTION IN ADDITIVE MODELS , 2009 .
[11] R. Lyons. Distance covariance in metric spaces , 2011, 1106.5758.
[12] Hua Liang,et al. Estimation and Variable Selection for Semiparametric Additive Partial Linear Models (SS-09-140). , 2011, Statistica Sinica.
[13] Frédéric Ferraty,et al. Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..
[14] Hao Helen Zhang,et al. Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.
[15] Gareth M. James,et al. Improved variable selection with Forward-Lasso adaptive shrinkage , 2011, 1104.3390.
[16] Hao Helen Zhang,et al. Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .
[17] Gábor J. Székely,et al. The Energy of Data , 2017 .
[18] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[19] Guang Cheng,et al. Semiparametric regression models with additive nonparametric components and high dimensional parametric components , 2012, Comput. Stat. Data Anal..
[20] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[21] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[22] P. Bühlmann,et al. Boosting with the L2-loss: regression and classification , 2001 .
[23] Fang Yao,et al. Functional Additive Models , 2008 .
[24] Hua Liang,et al. ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED ADDITIVE PARTIAL LINEAR MODELS. , 2011, Annals of statistics.
[25] M. Stone. Comments on Model Selection Criteria of Akaike and Schwarz , 1979 .
[26] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .