Irregular Liouville Correlators and Connection Formulae for Heun Functions
暂无分享,去创建一个
Giulio Bonelli | Alessandro Tanzini | Cristoforo Iossa | Daniel Panea Lichtig | G. Bonelli | A. Tanzini | C. Iossa | D. P. Lichtig
[1] M. Bianchi,et al. QNMs of branes, BHs and fuzzballs from quantum SW geometries , 2021, Physics Letters B.
[2] G. Bonelli,et al. Quantum curves and q-deformed Painlevé equations , 2017, Letters in Mathematical Physics.
[3] O. Lisovyy,et al. On Painlevé/gauge theory correspondence , 2016, 1612.06235.
[4] Leon A. Takhtajan,et al. Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on {{ℳ}}_{0,} , 2002 .
[5] Karl Heun,et al. Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .
[6] L. A. Takhtadzhyan,et al. Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil—Petersson metric on the Teichmüller space , 1985 .
[7] H. Awata,et al. Five-dimensional AGT conjecture and the deformed Virasoro algebra , 2009, 0910.4431.
[8] M. Piątek,et al. Solving Heun's equation using conformal blocks , 2017, Nuclear Physics B.
[9] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[10] M. Kimura,et al. Spectral Problems for Quasinormal Modes of Black Holes , 2021, Universe.
[11] O. Lisovyy,et al. Accessory parameters in confluent Heun equations and classical irregular conformal blocks , 2021, Letters in Mathematical Physics.
[12] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[13] Robert S. Maier. The 192 solutions of the Heun equation , 2007, Math. Comput..
[14] G. Bonelli,et al. Prepared for submission to JHEP N = 2 ∗ gauge theory , free fermions on the torus and Painlevé VI , 2019 .
[15] G. Bonelli,et al. Wild quiver gauge theories , 2011, 1112.1691.
[16] B. Cunha,et al. Kerr–de Sitter greybody factors via isomonodromy , 2015, 1508.04046.
[17] E. Witten,et al. Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.
[18] A. Litvinov,et al. Classical conformal blocks and Painlevé VI , 2013, 1309.4700.
[19] Alexander M. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .
[20] Rita Teixeira da Costa,et al. Hidden Spectral Symmetries and Mode Stability of Subextremal Kerr(-de Sitter) Black Holes , 2021, Communications in Mathematical Physics.
[21] Edward Witten,et al. Analytic continuation of Liouville theory , 2011, 1108.4417.
[22] Andrei Okounkov,et al. Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.
[23] Henri Poincaré,et al. Sur les groupes des équations linéaires , 1884 .
[24] J. Teschner,et al. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories , 2012, 1203.1052.
[25] Lotte Hollands,et al. Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials , 2017, 1710.04438.
[26] H. Dorn,et al. Two and three point functions in Liouville theory , 1994, hep-th/9403141.
[27] H. Awata,et al. Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String , 2010, 1008.0574.
[28] Liouville theory revisited , 2001, hep-th/0104158.
[29] M. Sinan,et al. Heun Functions and Some of Their Applications in Physics , 2011, Advances in High Energy Physics.
[30] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[31] P. Menotti. On the monodromy problem for the four-punctured sphere , 2014, 1401.2409.
[32] S. Teukolsky. ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .
[33] R. Davison,et al. Chaos and pole-skipping in rotating black holes , 2021, Journal of High Energy Physics.
[34] G. Bonelli,et al. Circular quiver gauge theories, isomonodromic deformations and $$W_N$$ fermions on the torus , 2019, Letters in Mathematical Physics.
[35] N. Nekrasov,et al. Quantization of Integrable Systems and Four Dimensional Gauge Theories , 2009, 0908.4052.
[36] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[37] M. Bianchi,et al. More on the SW-QNM correspondence , 2021, Journal of High Energy Physics.
[38] A. Shchechkin,et al. q-deformed Painlevé τ function and q-deformed conformal blocks , 2016, 1608.02566.
[39] D. Gaiotto. Asymptotically free = 2 theories and irregular conformal blocks , 2009, 0908.0307.
[40] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .
[41] Nikita A. Nekrasov. Seiberg-Witten prepotential from instanton counting , 2002 .
[42] Proof of Polyakov conjecture for general elliptic singularities , 2001, hep-th/0105081.
[43] G. Bonelli,et al. Exact solution of Kerr black hole perturbations via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers , 2021, Physical Review D.
[44] Liouville theory and uniformization of four-punctured sphere , 2006, hep-th/0604187.
[45] Joshua M. Lapan,et al. Black hole scattering from monodromy , 2013, 1304.3781.
[46] F. Klein. Ueber eine neue Art von Riemann'schen Flächen , 1876 .
[47] Confluent conformal blocks and the Teukolsky master equation , 2019, 1906.10638.
[48] J. Cavalcante,et al. Teukolsky master equation and Painlevé transcendents: Numerics and extremal limit , 2021, Physical Review D.
[49] The Heun functions as a modern powerful tool for research in different scientific domains , 2015, 1512.04025.
[50] Scalar and Dirac perturbations of the Reissner-Nordström black hole and Painlevé transcendents , 2021, Physical Review D.
[51] O. Lisovyy,et al. Irregular conformal blocks and connection formulae for Painlevé V functions , 2018, Journal of Mathematical Physics.