Irregular Liouville Correlators and Connection Formulae for Heun Functions

We perform a detailed study of a class of irregular correlators in Liouville Conformal Field Theory, of the related Virasoro conformal blocks with irregular singularities and of their connection formulae. Upon considering their semi-classical limit, we provide explicit expressions of the connection matrices for the Heun function and a class of its confluences. ∗bonelli@sissa.it †ciossa@sissa.it ‡daniel.panea@sissa.it §tanzini@sissa.it 1 ar X iv :2 20 1. 04 49 1v 1 [ he pth ] 1 2 Ja n 20 22

[1]  M. Bianchi,et al.  QNMs of branes, BHs and fuzzballs from quantum SW geometries , 2021, Physics Letters B.

[2]  G. Bonelli,et al.  Quantum curves and q-deformed Painlevé equations , 2017, Letters in Mathematical Physics.

[3]  O. Lisovyy,et al.  On Painlevé/gauge theory correspondence , 2016, 1612.06235.

[4]  Leon A. Takhtajan,et al.  Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on {{ℳ}}_{0,} , 2002 .

[5]  Karl Heun,et al.  Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .

[6]  L. A. Takhtadzhyan,et al.  Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil—Petersson metric on the Teichmüller space , 1985 .

[7]  H. Awata,et al.  Five-dimensional AGT conjecture and the deformed Virasoro algebra , 2009, 0910.4431.

[8]  M. Piątek,et al.  Solving Heun's equation using conformal blocks , 2017, Nuclear Physics B.

[9]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[10]  M. Kimura,et al.  Spectral Problems for Quasinormal Modes of Black Holes , 2021, Universe.

[11]  O. Lisovyy,et al.  Accessory parameters in confluent Heun equations and classical irregular conformal blocks , 2021, Letters in Mathematical Physics.

[12]  V. Vargas,et al.  Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.

[13]  Robert S. Maier The 192 solutions of the Heun equation , 2007, Math. Comput..

[14]  G. Bonelli,et al.  Prepared for submission to JHEP N = 2 ∗ gauge theory , free fermions on the torus and Painlevé VI , 2019 .

[15]  G. Bonelli,et al.  Wild quiver gauge theories , 2011, 1112.1691.

[16]  B. Cunha,et al.  Kerr–de Sitter greybody factors via isomonodromy , 2015, 1508.04046.

[17]  E. Witten,et al.  Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.

[18]  A. Litvinov,et al.  Classical conformal blocks and Painlevé VI , 2013, 1309.4700.

[19]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[20]  Rita Teixeira da Costa,et al.  Hidden Spectral Symmetries and Mode Stability of Subextremal Kerr(-de Sitter) Black Holes , 2021, Communications in Mathematical Physics.

[21]  Edward Witten,et al.  Analytic continuation of Liouville theory , 2011, 1108.4417.

[22]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[23]  Henri Poincaré,et al.  Sur les groupes des équations linéaires , 1884 .

[24]  J. Teschner,et al.  Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories , 2012, 1203.1052.

[25]  Lotte Hollands,et al.  Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials , 2017, 1710.04438.

[26]  H. Dorn,et al.  Two and three point functions in Liouville theory , 1994, hep-th/9403141.

[27]  H. Awata,et al.  Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String , 2010, 1008.0574.

[28]  Liouville theory revisited , 2001, hep-th/0104158.

[29]  M. Sinan,et al.  Heun Functions and Some of Their Applications in Physics , 2011, Advances in High Energy Physics.

[30]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[31]  P. Menotti On the monodromy problem for the four-punctured sphere , 2014, 1401.2409.

[32]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[33]  R. Davison,et al.  Chaos and pole-skipping in rotating black holes , 2021, Journal of High Energy Physics.

[34]  G. Bonelli,et al.  Circular quiver gauge theories, isomonodromic deformations and $$W_N$$ fermions on the torus , 2019, Letters in Mathematical Physics.

[35]  N. Nekrasov,et al.  Quantization of Integrable Systems and Four Dimensional Gauge Theories , 2009, 0908.4052.

[36]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[37]  M. Bianchi,et al.  More on the SW-QNM correspondence , 2021, Journal of High Energy Physics.

[38]  A. Shchechkin,et al.  q-deformed Painlevé τ function and q-deformed conformal blocks , 2016, 1608.02566.

[39]  D. Gaiotto Asymptotically free = 2 theories and irregular conformal blocks , 2009, 0908.0307.

[40]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[41]  Nikita A. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002 .

[42]  Proof of Polyakov conjecture for general elliptic singularities , 2001, hep-th/0105081.

[43]  G. Bonelli,et al.  Exact solution of Kerr black hole perturbations via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers , 2021, Physical Review D.

[44]  Liouville theory and uniformization of four-punctured sphere , 2006, hep-th/0604187.

[45]  Joshua M. Lapan,et al.  Black hole scattering from monodromy , 2013, 1304.3781.

[46]  F. Klein Ueber eine neue Art von Riemann'schen Flächen , 1876 .

[47]  Confluent conformal blocks and the Teukolsky master equation , 2019, 1906.10638.

[48]  J. Cavalcante,et al.  Teukolsky master equation and Painlevé transcendents: Numerics and extremal limit , 2021, Physical Review D.

[49]  The Heun functions as a modern powerful tool for research in different scientific domains , 2015, 1512.04025.

[50]  Scalar and Dirac perturbations of the Reissner-Nordström black hole and Painlevé transcendents , 2021, Physical Review D.

[51]  O. Lisovyy,et al.  Irregular conformal blocks and connection formulae for Painlevé V functions , 2018, Journal of Mathematical Physics.