On the Expected Complexity of Voronoi Diagrams on Terrains

We investigate the combinatorial complexity of geodesic Voronoi diagrams on polyhedral terrains using a probabilistic analysis. Aronov et al. [2008] prove that, if one makes certain realistic input assumptions on the terrain, this complexity is Θ(n+m&sqrt;n) in the worst case, where n denotes the number of triangles that define the terrain and m denotes the number of Voronoi sites. We prove that, under a relaxed set of assumptions, the Voronoi diagram has expected complexity O(n+m), given that the sites are sampled uniformly at random from the domain of the terrain (or the surface of the terrain). Furthermore, we present a construction of a terrain that implies a lower bound of Ω(nm2/3) on the expected worst-case complexity if these assumptions on the terrain are dropped. As an additional result, we show that the expected fatness of a cell in a random planar Voronoi diagram is bounded by a constant.

[1]  Michael T. Goodrich,et al.  Two-site Voronoi diagrams in geographic networks , 2008, GIS '08.

[2]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[3]  Franz-Erich Wolter,et al.  Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.

[4]  Yevgeny Schreiber,et al.  Shortest paths on realistic polyhedra , 2007, SCG '07.

[5]  J.N. Portela,et al.  Cellular network as a multiplicatively weighted voronoi diagram , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[6]  Esther Moet Computation and complexity of visibility in geometric environments , 2008 .

[7]  Z. Néda,et al.  On the size-distribution of Poisson Voronoi cells , 2004, cond-mat/0406116.

[8]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[9]  Marc J. van Kreveld,et al.  On realistic terrains , 2006, SCG '06.

[10]  Alexander M. Bronstein,et al.  Parallel algorithms for approximation of distance maps on parametric surfaces , 2008, TOGS.

[11]  Raffaele Cavalli,et al.  Influence of characteristics and extension of a forest road network on the supply cost of forest woodchips , 2010, Journal of Forest Research.

[12]  Xavier Goaoc,et al.  Empty-ellipse graphs , 2008, SODA '08.

[13]  Harith Alani,et al.  Voronoi-based region approximation for geographical information retrieval with gazetteers , 2001, Int. J. Geogr. Inf. Sci..

[14]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[15]  Mark de Berg,et al.  Visibility Maps of Realistic Terrains have Linear Smoothed Complexity , 2010, J. Comput. Geom..

[16]  Rolf Schneider,et al.  Classical Stochastic Geometry , 2009 .

[17]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[18]  Gerald E. Farin,et al.  Crest lines for surface segmentation and flattening , 2004, IEEE Transactions on Visualization and Computer Graphics.

[19]  Boris Aronov,et al.  The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains , 2008, ESA.

[20]  Koga ˘ lniceanu On the size distribution of Poisson Voronoi cells , 2007 .

[21]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[22]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[23]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[24]  Micha Sharir,et al.  An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions , 2006, SCG '06.

[25]  Imre Bárány,et al.  Random polytopes , 2006 .

[26]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[27]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.