LIPID11: a modular framework for lipid simulations using amber.

Accurate simulation of complex lipid bilayers has long been a goal in condensed phase molecular dynamics (MD). Structure and function of membrane-bound proteins are highly dependent on the lipid bilayer environment and are challenging to study through experimental methods. Within Amber, there has been limited focus on lipid simulations, although some success has been seen with the use of the General Amber Force Field (GAFF). However, to date there are no dedicated Amber lipid force fields. In this paper we describe a new charge derivation strategy for lipids consistent with the Amber RESP approach and a new atom and residue naming and type convention. In the first instance, we have combined this approach with GAFF parameters. The result is LIPID11, a flexible, modular framework for the simulation of lipids that is fully compatible with the existing Amber force fields. The charge derivation procedure, capping strategy, and nomenclature for LIPID11, along with preliminary simulation results and a discussion of the planned long-term parameter development are presented here. Our findings suggest that LIPID11 is a modular framework feasible for phospholipids and a flexible starting point for the development of a comprehensive, Amber-compatible lipid force field.

[1]  M. Chiu,et al.  G Protein-Coupled Receptors in Drug Discovery , 2005 .

[2]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[3]  Jeremy Pencer,et al.  Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. , 2008, Biophysical journal.

[4]  E. Kooijman,et al.  Biophysics and function of phosphatidic acid: a molecular perspective. , 2009, Biochimica et biophysica acta.

[5]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[6]  M. Bloom,et al.  Comparison of the orientational order of lipid chains in the L alpha and HII phases. , 1990, Biochemistry.

[7]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[8]  Eric Jakobsson,et al.  An improved united atom force field for simulation of mixed lipid bilayers. , 2009, The journal of physical chemistry. B.

[9]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[10]  Peter A. Kollman,et al.  Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..

[11]  Oliver Beckstein,et al.  Lipidbook: A Public Repository for Force-Field Parameters Used in Membrane Simulations , 2010, The Journal of Membrane Biology.

[12]  Austin B. Yongye,et al.  Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids , 2008, Molecular simulation.

[13]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .

[14]  B. Brooks,et al.  Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide , 1992, Biopolymers.

[15]  Anastasia N. Gentilcore,et al.  Examining the Origins of the Hydration Force Between Lipid Bilayers Using All-Atom Simulations , 2010, Journal of Membrane Biology.

[16]  John F. Nagle,et al.  Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains , 2006, The Journal of Membrane Biology.

[17]  C. Mukhopadhyay,et al.  Molecular insight of specific cholesterol interactions: A molecular dynamics simulation study , 2007 .

[18]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[19]  Bernard R. Brooks,et al.  Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water , 1995 .

[20]  Frank Bringezu,et al.  Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction. , 2003, Biophysical journal.

[21]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[22]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[23]  Ole G Mouritsen,et al.  Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. , 2004, Biophysical journal.

[24]  Leonor Saiz,et al.  Towards an Understanding of Complex Biological Membranes from Atomistic Molecular Dynamics Simulations , 2002, Bioscience reports.

[25]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[26]  E. Jakobsson,et al.  Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. , 1995, Biophysical journal.

[27]  H. Jarrell,et al.  Effects of replacement of a double bond by a cyclopropane ring in phosphatidylethanolamines: a 2H NMR study of phase transitions and molecular organization. , 1985, Biochemistry.

[28]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[29]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[30]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[31]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[32]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[33]  Mauricio Carrillo-Tripp,et al.  Evidence for a mechanism by which omega-3 polyunsaturated lipids may affect membrane protein function. , 2005, Biochemistry.

[34]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[35]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[36]  Mu-Ping Nieh,et al.  Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. , 2011, Biochimica et biophysica acta.

[37]  M. Berkowitz,et al.  Effects of alkali cations and halide anions on the DOPC lipid membrane. , 2009, The journal of physical chemistry. A.

[38]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[39]  Nava Whiteford,et al.  Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble. , 2009, Biochimica et biophysica acta.

[40]  Ryan W. Benz,et al.  Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. , 2005, Biophysical journal.

[41]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[42]  J. Seelig,et al.  Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. , 1975, Biochimica et biophysica acta.

[43]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[44]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[45]  D. Vance,et al.  Biochemistry of Lipids, Lipoproteins and Membranes , 2002 .

[46]  Ian R. Gould,et al.  Structure and dynamics of phospholipid bilayers using recently developed general all‐atom force fields , 2008, J. Comput. Chem..

[47]  H. Lygre,et al.  Intramolecular hydrogen bonding in articaine can be related to superior bone tissue penetration: a molecular dynamics study. , 2011, Biophysical chemistry.

[48]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[49]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[50]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[51]  Walter L Ash,et al.  Computer simulations of membrane proteins. , 2004, Biochimica et biophysica acta.

[52]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[53]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Jeffery B. Klauda,et al.  Simulation-based methods for interpreting x-ray data from lipid bilayers. , 2006, Biophysical journal.

[55]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[56]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[57]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[58]  P. Kinnunen,et al.  Role of the polar head group stereoconfiguration in the cation-induced aggregation of dimyristoylphosphatidylglycerol vesicles. , 1987, Biochemistry.

[59]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[60]  J. Seelig,et al.  Molecular order in cis and trans unsaturated phospholipid bilayers. , 1978, Biochemistry.

[61]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[62]  Andrei L Lomize,et al.  The role of hydrophobic interactions in positioning of peripheral proteins in membranes , 2007, BMC Structural Biology.

[63]  Carl-Johan Högberg,et al.  Modification of the CHARMM force field for DMPC lipid bilayer , 2008, J. Comput. Chem..

[64]  Balázs Jójárt,et al.  Performance of the general amber force field in modeling aqueous POPC membrane bilayers , 2007, J. Comput. Chem..

[65]  M. Berkowitz,et al.  Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes. , 2010, The journal of physical chemistry. B.

[66]  P. Devaux,et al.  Order parameters of unsaturated phospholipids in membranes and the effect of cholesterol: a 1H–13C solid-state NMR study at natural abundance , 2005, European Biophysics Journal.

[67]  M. Klein,et al.  United-atom acyl chains for CHARMM phospholipids. , 2008, The journal of physical chemistry. B.

[68]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[69]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[70]  W. Im,et al.  Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association. , 2008, Journal of the American Chemical Society.

[71]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[72]  R. Böckmann,et al.  1-Alkanols and membranes: a story of attraction. , 2007, Biochimica et biophysica acta.