A Novel Parallel QR Algorithm for Hybrid Distributed Memory HPC Systems
暂无分享,去创建一个
[1] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[2] Bo Kågström,et al. Algorithm 904 , 2010 .
[3] Bo Kågström,et al. Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010, ACM Trans. Math. Softw..
[4] R. C. Whaley,et al. Empirically tuning LAPACK’s blocking factor for increased performance , 2008, 2008 International Multiconference on Computer Science and Information Technology.
[5] Daniel Kressner,et al. A parallel Schur method for solving continuous-time algebraic Riccati equations , 2008, 2008 IEEE International Conference on Computer-Aided Control Systems.
[6] D. Kressner. The Effect of Aggressive Early Deflation on the Convergence of the QR Algorithm , 2008, SIAM J. Matrix Anal. Appl..
[7] David S. Watkins,et al. The QR Algorithm Revisited , 2008, SIAM Rev..
[8] David S. Watkins. The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .
[9] Yusaku Yamamoto,et al. Performance Modeling and Optimal Block Size Selection for the Small-Bulge Multishift QR Algorithm , 2006, ISPA.
[10] Daniel Kressner,et al. Multishift Variants of the QZ Algorithm with Aggressive Early Deflation , 2006, SIAM J. Matrix Anal. Appl..
[11] Daniel Kressner,et al. Block algorithms for reordering standard and generalized Schur forms , 2006, TOMS.
[12] Daniel Kressner,et al. Parallel Variants of the Multishift QZ Algorithm with Advanced Deflation Techniques , 2006, PARA.
[13] Robert A. van de Geijn,et al. A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..
[14] Krister Dackland,et al. Parallel and Blocked Algorithms for Reduction of a Regular Matrix Pair to Hessenberg-Triangular and Generalized Schur Forms , 2002, PARA.
[15] Karen S. Braman,et al. The Multishift QR Algorithm. Part II: Aggressive Early Deflation , 2001, SIAM J. Matrix Anal. Appl..
[16] Karen S. Braman,et al. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..
[17] Enrique S. Quintana-Ortí,et al. Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search , 2000, Parallel Comput..
[18] Krister Dackland,et al. Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form , 1999, TOMS.
[19] P. Benner,et al. Solving linear and quadratic matrix equations on distributed memory parallel computers , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).
[20] Peter Benner,et al. Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.
[21] Bo Kågström,et al. GEMM-based level 3 BLAS: high-performance model implementations and performance evaluation benchmark , 1998, TOMS.
[22] Bruno Lang,et al. Using Level 3 BLAS in Rotation-Based Algorithms , 1998, SIAM J. Sci. Comput..
[23] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[24] L. Trefethen,et al. Condition Numbers of Random Triangular Matrices , 1996, SIAM J. Matrix Anal. Appl..
[25] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[26] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..
[27] David S. Watkins,et al. The transmission of shifts and shift blurring in the QR algorithm , 1996 .
[28] Jack J. Dongarra,et al. A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form , 1995, Parallel Comput..
[29] David S. Watkins,et al. Forward Stability and Transmission of Shifts in the QR Algorithm , 1995, SIAM J. Matrix Anal. Appl..
[30] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[31] Jaeyoung Choi,et al. The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form , 1995, Numerical Algorithms.
[32] David S. Watkins,et al. Shifting Strategies for the Parallel QR Algorithm , 1994, SIAM J. Sci. Comput..
[33] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[34] Al Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a distributed-memory multiprocessor , 1990, Parallel Comput..
[35] Daniel Boley,et al. A parallel QR algorithm for the nonsymmetric eigenvalue problem , 1989 .
[36] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[37] G. A. Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor , 1989, C3P.
[38] Robert A. van de Geijn,et al. Storage Schemes for Parallel Eigenvalue Algorithms , 1988 .
[39] G. W. Stewart,et al. A parallel implementation of the QR-algorithm , 1987, Parallel Comput..
[40] Patricia J. Eberlein,et al. On the Schur Decomposition of a Matrix for Parallel Computation , 1985, IEEE Transactions on Computers.
[41] J. D. Roberts,et al. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .
[42] Jack J. Dongarra,et al. Scheduling two-sided transformations using tile algorithms on multicore architectures , 2010, Sci. Program..
[43] Daniel Kressner,et al. Parallel eigenvalue reordering in real Schur forms , 2009, Concurr. Comput. Pract. Exp..
[44] Lars Karlsson,et al. A framework for dynamic node-scheduling of two-sided blocked matrix computations , 2009 .
[45] Ralph Byers,et al. Lapack 3 . 1 xHSEQR : Tuning and Implementation Notes on the Small Bulge Multi-shift QR Algorithm with Aggressive Early Deflation , 2007 .
[46] J. Demmel,et al. Using GPUs to Accelerate the Bisection Algorithm for Finding Eigenvalues of Symmetric Tridiagonal Matrices , 2007 .
[47] B. Kågström,et al. The Multishift QZ Algorithm with Aggressive Early Deflation ? , 2006 .
[48] D. S. Watkins. A CASE WHERE BALANCING IS HARMFUL (cid:3) , 2005 .
[49] Daniel Kressner,et al. Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.
[50] Christof Vömel,et al. LAPACK WORKING NOTE 168 : PDSYEVR , 2005 .
[51] Christof Vömel,et al. LAPACK WORKING NOTE 168: PDSYEVR. SCALAPACK’S PARALLEL MRRR ALGORITHM FOR THE SYMMETRIC EIGENVALUE PROBLEM , 2005 .
[52] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[53] Jack J. Dongarra,et al. A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..
[54] R. C. Whaley,et al. Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..
[55] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[56] Thomas Schreiber,et al. A New Efficient Parallelization Strategy for the QR Algorithm , 1994, Parallel Comput..
[57] Robert A. van de Geijn,et al. Deferred Shifting Schemes for Parallel QR Methods , 1993, SIAM J. Matrix Anal. Appl..
[58] Corporate The MPI Forum,et al. MPI: a message passing interface , 1993, Supercomputing '93.
[59] M. An. accuracy and stability of numerical algorithms , 1991 .
[60] R. Byers. Solving the algebraic Riccati equation with the matrix sign function , 1987 .
[61] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[62] G. Golub. Matrix computations , 1983 .
[63] A. Laub. A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[64] V. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem , 1962 .