Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes

[1]  N. Stoynova,et al.  Use of the valine biosynthetic pathway to convert glucose into isobutanol , 2011, Journal of Industrial Microbiology & Biotechnology.

[2]  James C. Liao,et al.  Engineering Corynebacterium glutamicum for isobutanol production , 2010, Applied Microbiology and Biotechnology.

[3]  G. Kohlhaw,et al.  Subcellular Localization of Isoleucine-Valine Biosynthetic Enzymes in Yeast , 1974, Journal of bacteriology.

[4]  M. Hewlins,et al.  An Investigation of the Metabolism of Valine to Isobutyl Alcohol in Saccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[5]  James C. Liao,et al.  Expanding metabolism for biosynthesis of nonnatural alcohols , 2008, Proceedings of the National Academy of Sciences.

[6]  P. Dürre Biobutanol: An attractive biofuel , 2007, Biotechnology journal.

[7]  J. Dickinson Pathways of leucine and valine catabolism in yeast. , 2000, Methods in enzymology.

[8]  C. Peláez,et al.  Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. , 2004, FEMS microbiology letters.

[9]  Jin-Ho Seo,et al.  Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. , 2012, Journal of biotechnology.

[10]  L. Domingues,et al.  Technological trends, global market, and challenges of bio-ethanol production. , 2010, Biotechnology advances.

[11]  G. L. Kenyon,et al.  Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. , 2006, Bioorganic chemistry.

[12]  J. Liao,et al.  Metabolic engineering for advanced biofuels production from Escherichia coli. , 2008, Current opinion in biotechnology.

[13]  Matthew D. W. Piper,et al.  Identification and Characterization of Phenylpyruvate Decarboxylase Genes in Saccharomyces cerevisiae , 2022 .

[14]  Johannes Boonstra,et al.  Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. , 2005, FEMS yeast research.

[15]  Jay D Keasling,et al.  Metabolic engineering delivers next-generation biofuels , 2008, Nature Biotechnology.

[16]  Alyssa M. Redding,et al.  Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol , 2008, Microbial cell factories.

[17]  G. Stephanopoulos,et al.  Selection and optimization of microbial hosts for biofuels production. , 2008, Metabolic engineering.

[18]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[19]  James C Liao,et al.  Microbial production of advanced transportation fuels in non-natural hosts. , 2009, Current opinion in biotechnology.

[20]  J. Pronk,et al.  The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on Saccharomyces cerevisiae Metabolism , 2008, Applied and Environmental Microbiology.

[21]  Yong-Su Jin,et al.  Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Debourg,et al.  Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast , 2001, Applied Microbiology and Biotechnology.

[23]  Irina Borodina,et al.  Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism , 2011, Biotechnology for biofuels.

[24]  Lishan Zhao,et al.  Bioethanol. , 2006, Current opinion in chemical biology.

[25]  M. Hewlins,et al.  The Catabolism of Amino Acids to Long Chain and Complex Alcohols in Saccharomyces cerevisiae * , 2003, The Journal of Biological Chemistry.