Land Surface Microwave Emissivities over the Globe for a Decade

Abstract Microwave land surface emissivities have been calculated over the globe for ∼10 yr between 19 and 85 GHz at 53° incidence angle for both orthogonal polarizations, using satellite observations from the Special Sensor Microwave Imager (SSM/I). Ancillary data (IR satellite observations and meteorological reanalysis) help remove the contribution from the atmosphere, clouds, and rain from the measured satellite signal and separate surface temperature from emissivity variations. The method to calculate the emissivity is general and can be applied to other sensors. The monthly mean emissivities are available for the community, with a 0.25° × 0.25° spatial resolution. The emissivities are sensitive to variations of the vegetation density, the soil moisture, the presence of standing water at the surface, or the snow behavior, and can help characterize the land surface properties. These emissivities (not illustrated in this paper) also allow for improved atmospheric retrieval over land and can help evaluat...

[1]  Jean-Pierre Wigneron,et al.  Global soil moisture retrieval from a synthetic L-band brightness temperature data set , 2003 .

[2]  Catherine Prigent,et al.  Global maps of microwave land surface emissivities: Potential for land surface characterization , 1998 .

[3]  Tim J. Hewison,et al.  Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Norman C. Grody,et al.  Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth , 2004 .

[5]  F. Aires,et al.  Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements , 2005 .

[6]  Catherine Prigent,et al.  Microwave Radiometric Signatures of Different Surface Types in Deserts , 1999 .

[7]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Norman C. Grody,et al.  Anomalous microwave spectra of snow cover observed from Special Sensor Microwave/Imager measurements , 2000 .

[9]  Dan Tarpley,et al.  Mapping and monitoring of the snow cover fraction over North America , 2003 .

[10]  G. Dedieu,et al.  Global-Scale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements , 1997 .

[11]  Catherine Prigent,et al.  AMSU-A Land Surface Emissivity Estimation for Numerical Weather Prediction Assimilation Schemes , 2005 .

[12]  A. Robock,et al.  Satellite remote sensing of soil moisture in Illinois, United States , 1999 .

[13]  Gene A. Poe,et al.  Intersensor calibration of DMSP SSM/I's: F-8 to F-14, 1987-1997 , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[15]  Bhaskar J. Choudhury,et al.  A comparative analysis of satellite-observed visible reflectance and 37 GHz polarization difference to assess land surface change over the Sahel zone, 1982–1986 , 1990 .

[16]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[17]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[18]  K. Ridder Surface soil moisture monitoring over Europe using Special Sensor Microwave/Imager (SSM/I) imagery , 2003 .

[19]  Qin Li,et al.  A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  Venkat Lakshmi,et al.  A soil‐canopy‐atmosphere model for use in satellite microwave remote sensing , 1997 .

[21]  Andrew S. Jones,et al.  Passive microwave remote sensing of cloud liquid water over land regions , 1990 .

[22]  Filipe Aires,et al.  Snow characterization at a global scale with passive microwave satellite observations , 2006 .

[23]  Bhaskar J. Choudhury,et al.  Observation of hydrological features with Nimbus-7 37 GHz data, applied to South America , 1989 .

[24]  Andrew S. Jones,et al.  A Microwave Satellite Observational Operator for Variational Data Assimilation of Soil Moisture , 2004 .

[25]  Catherine Prigent,et al.  Microwave land emissivity calculations using AMSU measurements , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  John M. Melack,et al.  Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain , 1998 .

[27]  Jean-Pierre Wigneron,et al.  Frequency and angular variations of land surface microwave emissivities: can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  Edward G. Josberger,et al.  Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm , 2004 .

[29]  R. Myneni,et al.  Operational relationships between NOAA‐advanced very high resolution radiometer vegetation indices and daily fraction of absorbed photosynthetically active radiation, established for Sahelian vegetation canopies , 1996 .

[30]  Benjamin C. Ruston,et al.  Characterization of summertime microwave emissivities from the Special Sensor Microwave Imager over the conterminous United States , 2004 .

[31]  F. Aires,et al.  A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations , 2001 .

[32]  Dorothy K. Hall,et al.  Nimbus-7 SMMR derived global snow cover parameters , 1987 .

[33]  Fuzhong Weng,et al.  A microwave land emissivity model , 2001 .

[34]  Catherine Prigent,et al.  Microwave land surface emissivities estimated from SSM/I observations , 1997 .

[35]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[36]  Filipe Aires,et al.  Remote sensing of global wetland dynamics with multiple satellite data sets , 2001 .

[37]  Filipe Aires,et al.  Joint characterization of vegetation by satellite observations from visible to microwave wavelengths: A sensitivity analysis , 2001 .

[38]  Filipe Aires,et al.  Potential of Advanced Microwave Sounding Unit‐A (AMSU‐A) and AMSU‐B measurements for atmospheric temperature and humidity profiling over land , 2005 .

[39]  A. Cazenave,et al.  Surface waters monitoring by satellite altimetry , 2005 .

[40]  Catherine Prigent,et al.  Calculation of microwave land surface emissivity from satellite observations: validity of the specular approximation over snow-free surfaces? , 2005, IEEE Geoscience and Remote Sensing Letters.

[41]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[42]  Jean-Pierre Wigneron,et al.  Monitoring coniferous forest characteristics using a multifrequency (5–90 GHz) microwave radiometer☆ , 1997 .

[43]  R. Coleman Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications , 2001 .

[44]  Christian Mätzler On the determination of surface emissivity from Satellite observations , 2005, IEEE Geosci. Remote. Sens. Lett..

[45]  Kuo-Nan Liou,et al.  Remote Sounding of Cloud Parameters from a Combination of Infrared and Microwave Channels , 1983 .